Mark F. Adams

mfadams@lbl.gov

Education

Ph.D. in Civil Engineering, December 1998

University of California, Berkeley

Dissertation: "Multigrid Equation Solvers for Large Scale Nonlinear Finite

Element Simulations"

Co-chairs: Prof. R.L. Taylor and Prof. James Demmel

B.A. in Architecture, June 1983

University of California, Berkeley

Research Experience

Computer Systems Engineer 4, 2013–present

Computational Research Division

Lawrence Berkeley National Laboratory

Applied Numerical Algorithms Group

Adjunct Research Scientist, 2013– present

Columbia University

Department of Applied Physics and Applied Mathematics

Research Scientist, 2004–2013

Columbia University

Department of Applied Physics and Applied Mathematics

Technical Staff, 2002–2004

Sandia National Laboratories

Computational Sciences, Computer Sciences and Mathematics Center

John von Neumann Research Fellow, 2000-2002

Sandia National Laboratories

Computational Sciences, Computer Sciences and Mathematics Center

Postdoctoral Appointment, 1999-2000

University of California, Berkeley

With Prof. James Demmel, Department of Computer Science

Graduate Student Researcher, 1996-1998

University of California, Berkeley

Department of Computer Science

Summer Intern, 1998

Lawrence Livermore National Laboratory

Center for Applied Scientific Computing

Research Interests

Multigrid and Multilevel Methods, Nonlinear Matrix-Free Multigrid Equation Solvers, Large Scale Scientific Computing, Numerical Methods and Analysis, Plasma Physics Simulations, Computational Mechanics, Parallel Finite Element Methods.

Journal Publications

- Toward Textbook Multigrid Efficiency for Fully Implicit Resistive Magnetohydrodynamics. JCP, Vol. 229, No. 18, p. 6208 6219, 2010. [With R. Samtaney and A. Brandt.]
- High-Resolution Peripheral Quantitative Computed Tomography Can Assess Microstructural and Mechanical Properties of Human Distal Tibial Bone, Journal of Bone and Mineral Research, Vol. 25, No. 4, p. 746-756, 2010. [With X. Liu, X. Zhang, K. Sekhon, D. McMahon, E. Shane, J. Bilezikian and X. Guo.]
- Algebraic Multigrid Techniques for Strongly Indefinite Linear Systems from Direct Frequency Response Analysis in Solid Mechanics, Computational Mechanics, Vol. 39, No. 4, p. 497-507, 2007.
- Algebraic Multigrid Methods for Constrained Linear Systems with Applications to Contact Problems in Solid Mechanics, Numerical Linear Algebra with Applications, Vol. 11, Nos. 2-3, p. 141-153, 2004.
- Parallel Multigrid Smoothing: Polynomial Versus Gauss-Seidel, Journal of Computational Physics, Vol. 188, No. 2, p. 593-610, 2003. [With M. Brezina, J. J. Hu and R. Tuminaro.]
- Evaluation of Three Unstructured Multigrid Methods on 3D Finite Element Problems in Solid Mechanics, International Journal for Numerical Methods in Engineering, Vol. 55, No. 1, p. 519-534, 2002.
- Parallel Multigrid Solvers for 3D Unstructured Finite Element Problems in Large Deformation Elasticity and Plasticity, International Journal for Numerical Methods in Engineering, Vol. 48, No. 8, p. 1241-1262, 2000.

Awards & Honors

- Gordon Bell Prize, Supercomputing, 2004.
- *John von Neumann Research Fellowship in Computer Science*, Sandia National Laboratories, 2000-2002.
- Carl Benz Award for best industrial application, Mannheim Supercomputer Conference, 1999.
- Best Student Paper Award, 5th Copper Mountain Conference on Iterative Methods, 1998.