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The new schemes to be presented here have grown out of an extensive comparison 

of a variety of difference methods. The new schemes represent an attempt to 

combine the advantages and avoid the disadvantages of the schemes which were 

compared--namely, the von-Neumann-Richtmyer scheme [1], Godunov's scheme [2], 

HUSCL [3,4], and Glimm's scheme [5,6,7]. 

We list the advantages of the various schemes first. The principal advantage 

of the von-Neumann-Richtmyer scheme is its use of a staggered grid. Densities, 

internal energies, and hence pressures also are prescribed at zone centers, while 

velocities are prescribed at zone interfaces. This grid structure is well suited 

to the Lagrangian equations of hydrodyna~cs, because it allows narrow-based 

differences to be used to construct the necessary gradients. The result is that 

unusually high resolution of flow structure is obtained in Lagrangian problems. 

The advantage of Godunov's scheme is the clear physical picture upon which it 

is based. Rather than replacing an infinite Taylor series by a truncated one, 

this scheme replaces a physical system of complex structure by a simpler one 

consisting of structureless zones. This simpler system is evolved exactly for a 

time step, and then a similar replacement is made. Naturally, the method rests on 

the assumption that a Taylor series can be truncated, but the physical picture is 

always clear. To a physicist, this formulation has Un- mense appeal. By carrying 

the accuracy of the physical representation one order higher than Godunov's 

scheme, MUSCL combines the advantage of the clear physical picture with very high 

resolution of the flow structure. 

Glimm's scheme differs from Godunov's scheme in one essential way. For the 

variable values in its structureless zones it chooses those at some representative 

point within each zone. This point has the same location within each zone at a 

given time step, and it follows some well-distributed, pseudo-random sequence from 

one time step to another. The most important effect of this procedure is to give 

up exact conservation of mass, momentum, and energy in an effort to force all flow 

discontinuities to zone boundaries, where they can be treated exactly by the 
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method. Because errors arising in the improper treatment of discontinuities in 

the flow can severely contaminate a computation with a standard difference method, 

the treatment of discontinuities in Glimm's method gives that scheme unequaled 

resolution of flow structure in one-dimensional problems. 

When the above schemes are compared on a difficult two-dimensional flow 

problem, their disadvantages are readily apparent. The staggered grid of the , . 
von-Neumann-RichbDyer scheme, which is so convenient in Lagrangian calculations, 

is very badly suited to Euleriari calcu1ations. Particularly difficult to 

formulate is the conservation of total energy. An additional disadvantage is the 

necessity to treat discontinuities as smooth flow regions with steep gradients. 

This is done by adding in an artificial viscous pressure which smears out the 

discontinuities over at least two zones. The main disadvantage of Godunov's 

scheme is its relatively poor resolution of flow structure. HUSeL has the highest 

resolution of these four schemes, but that resolution is limited by an 

extrapolation procedure which is made at the beginning of each time step. HUSCL 

uses as data a zone-centered average value and first derivative of each variable. 

From these, values of all variables at the zone interfaces must be constructed in 

order to compute fluxes of conserved quantities during the time step. The 

extrapolation from the center of the zone to the zone interface is responsible for 

most of the error in HUSCL. Finally, the disadvantage of Glimm's scheme is that 

its very special properties in one-dimensional problems are lost in two 

dimensions t and the scheme must be abandoned in favor of a much lower resolution 

method in the neighborhood of discontinuities (see [7J). Because the principal 

advantage of Glimm's scheme in l-D flows was its treatment of discontinuities, the 

hybridization of the scheme for 2-D problems results in a poorer scheme than 

either MUSCL or the von-Neumann-Richtmyer scheme. 

We have devised two new difference schemes which avoid all these disadvantages 

and combine the advantages listed above. The key ingredients are: (1) the 

approach of Godunov's method in replacing a complicated physical system with a 

simpler one of a standard form, (2) the translation of this assumed spatial 

structure inside zones into temporal structure at the interfaces by solving 

Riemann1s problem as in Godunov's scheme and using the characteristic equations as 

in HUSeL, and a new ingredient (3) the use of both zone-averaged values and 

interface values of variables in order to define a distribution of each variable 

at every point which is continuous except at true flow discontinuities and which 

conserves mass, momentum, and energy exactly. We have devised a second-order 

method which uses a piecewise linear distribution for each variable with kinks at 

Zone centers and zone interfaces. In addition we constructed a second-order 

method which uses a piecewise parabolic distribution for each variable with kinks 

only at the zone interfa.ces. In I-D test problems, both new schemes show at least 
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twice the resolution of HUSCL, the best of the four schemes discussed above. Only 

the piecewise parabolic scheme has been run on 2-D problems. It preserves the 

high resolution of its I-D tests and is thus able to obtain a more accurate a flow 

description than HUSCL while using only half as many zones in each dimension. The 

gains over the other schemes discussed are still larger. The new algorithm is not 

yet optimized, but it presently requires on.ly 30% more computer time per zone per 

time step than does HUSCL. The gain in time consumed to achieve a given accuracy 

is thus a factor of 3 in I-D. In 2-D, a more complicated operator splitting 

algorithm doubles the time consumed, so that the gain is still only a factor of 

3. However, we expect that the new method can be speeded up considerably, and we 

hope to do so in the near future. 

In Fig. 1 all the schemes discussed above are compared using the example of 

the flow of air (gamma is 1.4) through a duct containing a step. Initially the 

flow is everywhere to the right at Mach 3, with P = 1.4, p • 1, c = 1. The duct 

width is 1, its length is 3, and the step of height .2 is located a distance of .6 

from the entrance. All the results in Fig. I were obtained with a uniform 

Cartesian grid with 8x = 8y = .OS. At the exit a tlflowout lt boundary condition 

is applied, but this is un~portant because the flow to the right is always 

slightly supersonic there. The system is shown at time 4, when a complicated 

system of shock reflections, rarefaction waves, and contact discontinuities is 

present. This problem ~s used by Emery in 1969 [8J to compare the methods of 

Lax, Rusanov, and Lax and Wendroff (Emery used a very slightly different duct with 

a grid of nodal points with 8x c 8y = 1/27). One of us also used this problem 

to demonstrate the HUSCL scheme described by van Leer in [3J. In that article the 

relatively structure less steady flow in the duct is displayed. This steady flow 

is attained at about time 12. 

Because of the lack of space, we show only the contours of density at time 4. 

These are the most difficult to compute correctly, because of the weak contact 

discontinuities which emanate from the two shock triple points associated with the 

two Mach reflections of the bow shock at time 4. In Emery·s article [8], only 

pressure contours are shown, and it is likely that the weak contact 

discontinuities in the flow were not resolved by any of the three methods he 

compared. In Fig .. la the results of Godunov· s scheme are shown. There is some 

indication of the Mach reflection at the upper wall. In Fig. Ib, the 

Glimm-Godunov hybrid scheme shows only some improvement over Fig. la at the cost 

of introducing noise from the random choice feature of Glimm's scheme. If the 

Mach reflection could be fully resolved (it is indeed resolved with 4 times as 

many zones), the weak contact discontinuity would be quite sharp. After an 
initial smearing by Godunov's method, Glimm's method preserves the relatively 

narrow contact region. 
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A dramatic increase in resolution results from using a second-order accurate 

scheme. The results in Fig. Ie were obtained with the BBC code [9]. This code 

uses a modified von-Neumann-Richtmyer scheme devised by DeBar [10] for its 

Lagrangian step, and a HUSCL remap step on a staggered grid devised by Woodward. 

To obtain the thin shocks shown here, the artifical viscosity was set to zero in 

the Lagrangian step. This has resulted in a mild oscillation behind each shock 

which is most evident when the pressure is plotted. When the artificial viscosity 

is turned on t the shocks double in width and the flow resolution is significantly 

degraded. Especially to one who considers the staggered grid formulation both 

confusing and inconvenient, these results are remarkably good. The contact 

discontinuity near the upper wall is spread over 2 to 3 zones, but it is clearly 

visible. Also the upper Mach stem is in the correct position directly above the 

step, and it has the correct length (as proven by a run on a more refined mesh of 

~x= ~y = .02 which is shown in Fig. 2). The HUSCL results shown in Fig. Id 

are of comparable quality. They are superior in that the post-shock oscillations 

of BBC are not present and the contact discontinuity is more sharply defined. 

However, somewhat more entropy is artificially produced as the flaw rounds the 

corner of the step. The result is a classic interaction of a shock with a 

boundary layer, which produces the second, very weak reflected shock from the top 

of the step at x = 1.4. These two codes run at almost precisely the same 

speed-2800 points per sec per cycle on a CDC 7600 and 20000 pts/sec/ey on a Cray 

1. They both make use of separate Lagrangian and remap steps in each 1-D pass. 

In Fig. le we show the results of the new scheme which uses piecewise 

parabolic interpolation. In I-D this scheme can be made third-order accurate, hut 

because of its use of 1-D passes it can only be second-order accurate in 2-D. The 

scheme used here is thus made only second-order accurate in I-D, although several 

gestures toward higher order are included. The results of this new scheme are 

comparable in quality to those of Fig. 2, which ~re obtained with BBC using a 

much finer grid of 6x = 6y =.02. The resolution of the weak contact 

discontinuities from both Mach stems is particularly notable. A "monotonicity 

trick" has been used to constrain the interpolation parabolae so that the 

post-shock oscillations usually associated with high-order schemes are completely 

absent. In Fig. 3 we show results of the new scheme using a grid with ~x = 6y 

= .1. Evidently. even on this coarse grid the new scheme correctly resolves all 

the essential features of this complicated flow. 

Finally, for comparison with the schemes discussed by Sod [ll] t we have shown 

1n Fig. 4 results of the new pi~cewise linear scheme on his shock tube problem. 

The results in Fig. 4 use a grid of 50 zones rather than Sod's lOOt and are more 

accurate than the results of any of the 12 schemes he compared. HUSCL results on 

this problem have been given by van Leer [3]. 
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1 

o 1 2 3 

la) Godunov's Method 29 density contours from 1.18 to 7.14 

1 

o 1 2 3 

Ib) Glimm-Godunov Hybrid 29 density contours from 1.1S to 6.74 

1 

o 1 2 3 

lc) BBC 22 density contours from 1.00 to 6.25 

1 

o 1 2 3 
Id) MUSCL 30 density contours from 0.85 to 6.34 
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1 

1 2 3 o 
Ie) Piecewise Parabolic Method 30 density contours from 0.73 to 

6.31 

Fig. 1. Results of several difference schemes for the flow problem 
described in the text. All schemes use a series of 1-D 

o 

Fig. 2 

1 

o 
Fig. 3 

sweeps and Courant numbers of 0.8 or 0.9. All use a uniform 
grid of 20 x 60 zones. The methods are: (a) Godunov's method, 
(b) Glimm-Godunov hybrid, (c) BBC. (d) MOSCL, (e) the new piece­
wise parabolic scheme. 

1 2 

BBC results for the same problem as 1n Fig. 1 but using 
a finer, uniform grid of 50 x'150 zones. 

23 density contours from 0.75 to 6.25 are shown as well 
as contours at densities 0.5 and 0.6. 

1 2 

3 

3 

Results of the new piecewise parabolic scheme for the same 
problem as in Fig. 1 but using a coarser, uniform grid of 
10 x 30 zones. 

30 density contours from 1.03 to 6.03 are shown. 
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Fig. 4 Results of the new piecewise linear scheme for the shock tube 
problem studied by Sod. The solid line shows the exact 
solution, and the zone average and interface values for the 
grid of SO zones are shown as circles. 


