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On the refraction of shock waves at a slow-fast gas
interface
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We present the results of numerical computations of the vefraction of a plane shock
wave at a CO,/CH, gas interface. The numerical method was an operator split
version of a second-order Godunov method, with adaptive grid refinement. We
solved the unsteady, two-dimensional, compressible, Kuler equations nmnnerieally,
assuming perfect gas equations of state, and compared our results with the
experiments of Abd-El-Fattah & Henderson. Good agreement was usually obtained,
especinlly when the contamination of the (‘H, by the (10, was taken into aceount.,
Remaining discrepancies were aseribed to the uneertainties in measuring certain
wave angles, due to sharp curvature, poor definition, or short length of the waves at
large angles of incidence. All the main features of the regular and irregular refractions
were resolved numerically for shock strengths that were weak, intermediate, or
strong. These include free precursor shock waves in the intermedinte and strong
cases, evaneseent {smeared out) compressions in the weak case, and the appearance
of an extra expansion wave in the bound precursor refraction (BPR). The structure
of a BPR was elucidated for the first time.

1. Introduction

We consider two gases meeting along a plane interface, and we assume for
simplicity that they both obey the perfeet gas cquation of state (figure 1). We
suppose that a plane incident shock 1 of wave veloeity U is propagated into one of
the gases by the impulsive motion of a rigikd boundary, such as u piston which drives
into the gas at a velocity (7, with [U],| < JU]. We also assume that ali the boundarics
of the system are adiabatie. Subsequently © meets the interface between the gases at
an angle of incidence a; = 0 measured with respect to the interface. The shock © now
heging to pass from the first, or incident gas 1, into the second, or reeeiving gas 11,
where it becomes the transmitted shock . When its new velocity U differs in
magnitude from [, then by definition @ has been refracted. Formadly the yelative
refractive index n is defined by (Henderson 1989)

n=—-. (1)
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Fioure 1. Refraction of a normal shock wave i at zero angle of incidence, a, = 0, at a pluin
interface between two media: (a) before refraetion; (b) after refraction.

The refraction is slow-fast when n < 1; fast-slow when r» > {; and there is no
refraction when n = 1.

If in laboratory frame the velocities of the gas upstream and downstream of the
incident shock are u, and u, respectively, then the piston velocity is

Uy = uy—u,.

In this frame of reference the gas upstream of ¢ is undisturbed, so that u, = 0, and
the boundary condition then becomes simply, U, = u,.

In general a reflected wave 18 also produced at the gas interface by the refraction
(figure 1b). When i is a shock then so also will be £, but the reflected wave may be
either an expansion e, or a shock r. It is assumed that thero is always continuity in
the pressure P and in the particle velocity u across the interface. Following refraction
this gives

P=P, (1.2)
— (1.3)

The nature of the reflected wave may be determined with the help of (1.2} and (1.3)
together with the notion of wave impedance Z. For head-on refraction at angle of
incidence a; = 0 the incident wave impedance, Z,, is defined by

h-n_nA-h

Z, = =-1 "0
) U, — Uy (‘;n

Alternatively, in shock wave coordinates we have

, 4

A‘z—v—"z—;)ouo=[)0(]{. (1.4)
o

. u

41=-;l=_ﬁt“1» (1.5)
!
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where p is the density, v is the specific volume, and we have used the fact that in
shock wave coordinates u, = —{J. (In general, an upper case U (U, U, ete.) always
denotes n velocity with respect to laboratory coordinates whereas a small case «
(g, 1y, cte.) may denote a velocity in laboratory coordinates or shock wave
coordinates depending on the context.) The transmitted and reflected wave
impedances %, and Z, are defined similarly. The pressure reflection (£) and
transmission (7') coefficients are

P-r_7,2,-7,

REI’,—-I:]—ZZ'—Z“ (l.b)
.11_"!—1,0__711_2(—'21 (1.7)

=P-P, Z,7,-7,

with similar expressions for the shock intensity which is the average power flux
through unit area in the direetion of propagation, and the coefficient for the total
power transmitted (Henderson 1989). The coefficients (1.6) and (1.7) show that when
the impedance inereases during refraction |Z)] > |Z,], then a shock r will be reflected
from the interface back into the incident gas because then R > 0, but that when it
decrenses 12| < |Z,], then we obtain a reflected cxpansion with £ < 0. When the
impedances are equal, Z, = Z,, there is no reflected wave even though the two gases
may differ in composition or in states. In this case R = 0. Now combining (1.4) for Z,
and Z, with (1.1) we obtain

(L.8)

where v, is the specific volume of the gas upstream of the ¢ shock. So even with
%, = Z,, the wave will still be refracted if v, % v,

More generally, the incident shock may meet the gas interface at a non-zero angle
of incidence a, # O (figure 2a), and different refraction phenomena then oceur. The
wave systems illustrated in figure 2 (@) are called regular refractions by analogy with
von Neumann's (1943) classification of regular and Mach reflections. His theory of
regnlar reflection is casily extended to regular refraction and the results are in good
agreement with experiment (Jahn 1956; Abd-El-Fattah, Henderson & Lozzi 1976
Abd-El-Fattah & Henderson 1978a, b).

If a regular wave system is to exist, then all of its waves must travel at the same
velocity {7 along the interface, and this fact gives immediately the fundamental law
of refraction, namely
_ W _

= = — =, (1.9)
sina, sinz, sina, sina

o

where U} is the velocity of any wave in the reticcted and contred expansion wave, and
a is the corresponding wave angle (figure 2¢). Evidently, [U)) = ¢;, which is the local
speed of sound. Under certain conditions this law may be violated ; for example with
& continuous increase in the parameter a, the regular wave system may break up
with the ¢ shock moving shead of the incident and reflected waves to form some type
of irregular refraction with precursor waves (figure 2d-f). In this event,

LR L L _d (1.10)
ana, sma,  sina, sina;
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{a) RRR " a =a.,. () RRE

(d) FNR

FiauRe 2. (a-¢) Regular and (d-f) irregular shock refraction systems for o slow-fast CO,/CH, gas
interface, n < 1. (a) Reflected shock, RRR, |Z| > |Z], a, > a,; (b) reflected Mach line degeneracy,
12 =1Z). a, > a,= a,,; (¢} reflected expansion, RRE, |2 < |Z], a, > a,; (d) free precursor von
Neumann refraction, FNR; (e) twin regular reflection-refraction, TRR: (f} twin Mach re-
flection—refraction, TMR. i, Incident shack ; ¢, tranamitted shock; r, 7/, reflected shocks s e, reflected
expansion wave; k, modified incident shock ; 2 Mach shock ; s, side shock ; &, modified side shoek,
m gan interface; 1, Region of undisturbed CO,: 11, region of undisturbed CH,; MW, Mack line;
edy, 5, contact discontinuity; TF, | trajectory path of shock wave confluences: Xeigy trajectory
path angles of shock wave confluences; ¥, 4, shock triple points; quadruple point; O origin where
i first encountered gas interface.

Fur oblique refraction, a, > 0, it is necessary to generalize the definition of wave
impedance to

> ]

! 1 [

] o *
U, cos g,

where f; is the wave angle measured with respecet to the disturbed gas interface ( figure
2a). Similar expressions arc defined for the other waves, and with these definitions
(1.6) and {1.7) remain valid,

The refraction law (1.9) may be combined with the definitions of 2, Zy, and Z, o
extend ({.B) to

Z, =

[l _sina, v Z,cos g,
W] sina, v,Z,cos8,

(L11)

The particular angle a, for which there is equality of impedance, Zy =7, is called the
angle of intromission o, = a,,,, us in acoustic theory. The wave i is still refracted at
this condition because in gencral n % | when a, = a,,, (figure 24).

Using the refraction law we may also write ,

cosa, = (1—sina )t = (1 —n"*sin?a, ).
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Thus cosa, becomes pure inaginary when 1 —n"%sin?a, < 0, that is when a, exceeds
¢ ¢ ¢

the normal eritival angle, a,, which is defined by

gina, = n = —. (1.12)

Clearly a,. only exists for slow—fast refraction, n < 1. At the eritical condition, ¢ is
perpendicular to the gas interface a, = in; that is, it is a normal shock. Accordingly
the gas interface 18 not defleeted in thid special ease and it remains everywhere in a
single plane. It follows that when the pressure 1 is applied to the receiving gas it
causes no deflection of the interface, so that it behaves like a rigid surface. In this
sense |Z] =00, when a, = a.. In summary, by (£.11) n ix a measure of the capacity
of the gases to bend or refract the incident shock, while by (1.6) and (1.7) the wave
impedances determine the nature of the reflected and transmitted waves.

Whitham's (1958, 1959) theory has been extended in an attempt to dederibe both
regular and irregular refractions (Catherasoo & Sturtevant 1983; Schwendeman
198R). It is attractive not only for ity simplicity but also because it often agrecs
remarkably well with experiment. However, it is an approximate theory, and it does
not describe wave reflections properly, nor disturbances that arise in the downstream
flow and subsequently overtake a shock. In refracting systems difficulties can also
arise which are apparvently sssocinted with the formation of a ‘shock shock ' on an
interface, or even when one is close to it. Furthermore it cannot deal with shock
discontinuitics at a gax interface (Catherasoo & Sturtevant 1983).

By contrast the von Neumann theory is exact (within its assumptions) but it is
only adequate for describing regions of uniform flow, which restricts it to regular
refractions. Irregular refractions have non-uniformitics and it is then necessary to
solve the equations of motion everywhere in order to obtain an adequate description
of the phenomena.

fn the present paper, we present the results of our numerical studies of slow-fast
refraction with particular emphasis on the irregular systems. The numerical method
that we used is an adaption of seccond-order, finite-difference solution of the Euler
and continuity equations for the two-dimensional, unsteady, compressible flow of
perfect gases. It is an operator split version of the sceond-order Godunov method
developed by van Leer (1979), Collela & Glaz (1985), and Colella & Woodward (1984).
The results are compared with the experimental data of Abd-El-Fattah & Henderson
{1978b). Agreement with experiment. is satisfactory for much of the data, particularly
if allowanee is made for the effects of gas contamination in the experiment. Some
discrepancies do exist, expecially for the a, data for irregular systems. This is aseribed
to uncertainties in the measurements caused by the sharp curvature of the
transmitted wave at large angles of incident a,.

2. The experiments

The experimental method has been deseribed by Bitondo (1950), Jahn (1956),
Abd-El-Futtah ef al. (1976), and Abd-El-Fattah & Henderson (1978a,b). The
experiments of the last named authors appear to be the most extensive and we
deseribe them brictly. A delicate polymer membrane was set up in a shock tube; its
functions were to define the initial gas interface as o plane surface, and to prevent the
guses from mixing until the incident shock arrived. The mass of the membrane was
between 0.5 and 1O x 1074 kg ™%, and its thickness was between 5.5and 6.5 x 107% m,
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In order to set up & slow-fast interface such as CO,/CH,, the CO, was slowly
introduced onto one side of the membrane while the CH, was introduced onto the
other. The gases were continuously circulated through the shock tube to minimize
mutual contamination by diffusion and leakage across the membrane. The
contamination was monitored continuously by a thermal conductivity meter, and
typically the (‘H, was contaminated by about 10% by volume with (O, but the ('O,
was much purer. 1t should be noted that the volume of CO, in the shock tube was
about 250 times larger than the CH,.

A shoek of preseribed inverse strength £ = Py /P, way started in the CO,, and
arcanged to strike the membrane/gas interface at a predetermined angle of incidenee
a;. The shock shattered the membrane and entered the CH,, and was thus refracted.
The wave system was photographed by a schlieren optical system, and transducery
measured the speed and strength of the incident shock.

Reeently, Haas & Sturtevant (1987) have experimented with weak shoeks
refracting at cylindrical and spherical interfaces. The gases were initially prevented
from mixing by the use of plastic membranes or soap bubbles. However, in the
interest of simplicity we will confine our attention to plane gas interfaces.

3. The computations
3.1. The numerical method

We used a second-order finite-difference solution of the Euler and continuity
equations on a rectangular grid with reflecting boundary conditions on three sides
and inflow boundary conditions on the fourth. The numerical integration of the
equations was accomplished with an operator split version of a sccond-order
Godunov method (van Leer 1979 ; Colella & Woodward 1984). [n our implementation
we employed the efficient algorithm for the solution of the Riemann problem
developed by Colella & Glaz (1985). Since the method is & conservative finite-
difference scheme, mass, momentum, and energy were all conserved. The method is
accurate to second order in space and time for smooth flow, and captures shocks and
other discontinuities with minimum numerical overshoot and dissipation. 1t has been
used quite extensively to compute unsteady shock reHlections in gases, and has
demonstrated ability to resolve complex interactions of discontinuities in good
agreement with experiment (Glaz et al. 1985).

An important feature of the numerical method is that it employs a dynamic
regridding strategy called adaptive mesh refinement (AMR). This entails placing a
finer, rectangular grid over any region of particular interest or excessive error, with
the grid spacing being reduced by an even factor - typically 2 or 4. The boundary of
the refined grid always coincided with the cell edges of the coarse grid. Multiple levels
of refinement were possible with the maximum number of nested grids being supplied
as a parameter by the user. In the present work, we determined those regions that
required refinement by estimating the local truncation error in the density, and
refining wherever the error was greater than an initially specified amount. In
addition, we refined to the maximum extent alli multifiuid cells (those eontaining
both gases) and all cells lying within two cell widths of a multifluid cell. Special care
was taken to ensure that the fluxes on boundaries between coarse and fine grids
matched ; the details are given by Berger & Colella (1989). Adaptive gridding was o
crucial component of our method which enabled us to resolve important features of
the flow economically. A typical run with two levels of gridding and a refinement
factor of 4 took 10 minutes of CPU time on a CRAY XMP computer.
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Pure curbon Pure Contaminated
dioxide methane methane
Y 1.288 1.303 {.301
P 44.01 18.04 18.84

Tantg 1. Properties of the pure and contaminated gases

The gas interface was modelled using an algorithm of Noh & Woodward (1976)
known us SLIC (Simple Line Interface Calculation). Here a number f,,, between 0 and
1, and called the volume fraction, was associated with each grid cel‘lj,thmugh which
the gas interface passed. This Ji; was the volume fraction of the cell oceupied by ane
f)f the gases. Obviously the other gas occupied the fraction 1 —f,. During each
integration sweep a simple picture of the interface consisting entirely of vertical and
h()l:iZ()nb&l line segments was constructed from this volume fraction information.
':I‘llns was used to determine how much of each gas was conveeted out of the cell and
into adjacent eells on this pass, and henee to update the volume fractions associated
with each ecell. One of the drawbacks of volume-of-fluid-based interface tracking
H(-:lwnws such as SLIC is that in a region undergoing expansion or compression both
of the gases in o multiffuid celt will be expanded or compressed equally, in spite of
the density differences that may exist between them. To use this method with the
present problem we incorporated a scheme due to Colella, Ferguson & Glaz (1990) in
:&;]hich ithv. (!(t!uatinns of gas dynamics are supplemented with evolution equations for
‘he volume fraction, total energy, and mass density of cach gas i 2 ifluid ce
This formulation takes into account the compr(‘sij{bility Ofgeachngt:: ;‘):1‘:::3:;;:;?::
multifluid cell so as to ensure the correct individual expansions or compressions.

3.2, Outline and plan of the numerical work

We shall present the results of our computations as though we had done a series of
vxmrim(rnts in a shock tube. This means that in a particular scquence, the ratios of
the specific heats y,,y, of the gases and their molecular weights g, 4, were held
constant and so also was £. The only parameter that varied thmugi;‘tl"w. scqunnéo
Was o, This was assumed to be initially near the condition for head-one incidence att
a; = 0; it was then increased in discrete steps until it approached glancing incidence
8t o, ={n; thus 0 < a, < In. A particular refraction was uniquely defined m;co the
'v‘alu'cs of (Yo Yoot i) together with the system boundaries were given.
Pypically the phenomena that appeared from this procedure were a sequence of
regular refractions followed by an irregular sequence. )
We ‘shtfll compare our numerical resulta with the experimental data obtained by
'Abd—hl- Fattah & Henderson (19785) for the slow- fast, n < 1, €O, /CH, gas interface.
Fhere were two artifacts in those experiments which we took into aceount in our
cumpljtutiunx in order to make the comparison as accurate as possiblé. These were
the inertia of the membrane and the contamination of the gases by diffusion and
leakage acrosy it
M{émhmm inertic. We caleulated the membrane density from the published data

fmd it was about 680 times denser than €O, at standard conditions. Using this faotm’-
in t.hf: computations, the membrane was treated s though it were superdense carbon
()huxulu‘ Generally its effect was negligible; all we noticed was 4 slight displacement
in the pressure contours when the contours were compared with, and withmﬁ,, £he
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membrane for the same refractions. In view of this we deleted it from the remainder
of our computations.

Uas contuminalion The published data showed that the methane was contaminated
by about 10% by volume with carbon dioxide, but that the €O, itsclf was
approximately pure. (Remember their volume ratio in the shock tube was about
250:1 in favour of the CO,.) The properties of the pure and contaminated gases are
presented in table 1. Contamination is a significant cffect and it will be discussed
below,

4. Results and discussion for a weak shock refraction sequence
4.1. The polar diagrams

The scquence and its polar disgrams are presented in figure 3. They are similar to the
ones described by Abd-El-Fattah & Henderson although here we assume that the
CH, is not contaminated by the CO,. When a is comparatively small, thete is a
regular refraction with a reflected expansion (RRE) (figure 3a), so |7, < |Z], <0,
1> T > 0. Since the refraction is stow-fast, n < 1, we have by (1.11) that a, > a,,
that is { is steeper than i, The reflection e, is u eentred, Prandtt Meyer, expansion fan
and it is plotted in the polar diagram as the isentropic curve e, 1b interseets the polar
for the t shock at the paint €, which defines the von Neumann solution for RR1S. The
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golution requires there to be continuity in the pressure and in the streamline
direction 8, everywhere along the gas interface. Although (1.2) remains valid when
a; # 0, (1.3) must be replaced by

3, +8, =34,
where 8,, 8, and &, are the deflection angles for the i, 7 and { waves respectively. This
is the continuity condition for the streamline direction. It is sometimes convenient
to replace (1.2) by the equivalent expression

(R=P)+ N =1) = (1= 1)

For reflected expansions we must replace (4.1) by

Ucon 8+ f cos By d),, = U, cos B,
1

where Uy, U, are the dreiving piston veloeities of the ¢ and ¢ sho(iks, atl,; is the
infinitesimal withdrawing piston velocity for an arbitrary jth wave in the reflected
expansion, and g, . f; are the wave angles which are defined with respeet to the
disturbed pus interface (figure 2a and 2¢).

If a, is now increased continuously, the polars shrink somewhat and the

(4.1)
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() a, = 27°
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i
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CH - [
e ::::“ r {h) a, = 32.0592°
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! D 4]
EPR

FNR

Fraune 3. Polar diagrams for a weak shock refraction sequence with £, = 0.78 at & pure CO,/CH,
gas interfuce. (@ ) Regular refraction, (d) transition, and (¢ g) irregalar refraction. () Reflected
expansion, RRE, at @, = 27°, |Z ] < |Z]; (b) degenerate refraction at the angle of intromission a, =
X X J20002°, Z, = Z,, R =0, T= 1, the condition for tatal energy transmission; (¢) reflected
shock, RRR, at a, = 33.27°, |Zf > |Z; (d) the shock critical sogle a,, z 34.4885°; (¢) houd
precursor refraction, BPR, a, > a,; (f} free precursor refraction, FPR, 4 and ¢ are evanescent
waves; (g) free precursor von Neumann refraction, FNR, M, M, M,,, frec-stream Mach numbers
upstream, and relative to the i, f, and r shocks respectively; (¢, AL A,) solutions of the von
Neumann regular refraction theory: D, disturbed gaw interface; A,, intersection point of the
primary polara (1,£). For other symbols see the caption to figure 2.

(c) &, =3327°
intersection point 4, of the primary polars (i, 8) moves downwards towards the point

i which is the map of the incident shoek. As this happens the strength |7, — P} of the \
expansion decreases and eventually vanishes at the angle of intromission a; = a;,,, = L

32.0692°, which corresponds to €, = i = A4,. The reflection is reduced to & Mach line - -
degeneracy [P, — P} = 0 and the other wave impedances become equal: 2, = Z, R = Fiaurg 4(a-c). For eaption see page 13.
0, T' = 1. This is the condition for tolal transmission, and here also a, > a, (figures 2b
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(d) =, = 34.4885°

() a, = 38°

Frovre 4(d-f). For caption see facing page.

and 3b). As a, continues to increase, @, > a,,,, the reflection becomes a shock (RIRR)
(figure 3¢), and now 1Z,| > [Z], R > 0, T'> 1, with ugain a, > a,. The von Neumann
theory gives two solutions A, and A, for RRR, but experiment shows that it is the
weaker A, solution which appears physically. In this respeet note that A, is the
continuation of the ¢, solution while A, is not ; in fact st the intromission angle, €, and
A, are identical and degenerate: ¢, = A, = 4, =1,

Refraction of chock waves at a slow fast gas inlerfuce 13

(%) a, = 49°

) a, = 65°

Frauvre 4. Contour plots of log P for a weak shock refraction sequence with £ = 0.78 at a pure
€O, /CH, gas interfaee. {2} @, = 27°, RRE; (1) total transmission at the angle of introminsion,
a, = a,, T 0% () q, = 33.27°, RRR: () RRR=BPR, A, = A, at the shack critical angle
a, = JARRE%; (¢} a, = 3R, BPR; (f) a, = 43° FPR; (9) «, = 49°, FPR; (h) a, = 65°, FNR. (The
straight line running diagonally from upper left to lower right represents the initial, undisturbed
gas interface. It is not 8 pressure contour.)

As a, continues to increase, A, and A, approach cach other and eventually coincide,
A, = A, (figure 3d). This takes place at the shock eritical angle a, = a,, = 34.488°. In
general this angle does not coineide with the normal eritical angle a,., defined by (1.12),
and usually oveurs before it, a,,. < a,. For a; > a,,, the A and A, solutions are no
longer physically significant. because they are unreal. The refraction iy now irregular
i precursor compression waves may develop (figure 3e-g). In the experiments of
both Jahn and Abd-El-Fattah & Henderson the precursors did not appear as soon as
the shock eritical angle was exceeded. In fact, a; had to increase somewhat beyond
. before they were observed. We shall return to this point later.

4.2, The numerical resulls for the sequence

The numerical results presented here are all for wncontaminated gases with no
membrane. We believe that these results will be of maore general interest than those
which include the artifacts of the experiments. Seleeted contour plots for the
seguenee are shown in figure 4, a sehlieren photograph from the experiments is shown
in figure 5{a) and colour contour plots to compare with the sehlieren photograph are
shown in figure 5(b, ¢} (plate 1). Of course the comparison can only be qualitative
beeause the numerieal results do not include the artifacts. However, note that the
numerical results exhibit all of the essential features of the low which are found in
the sehlicren photo and that these features appear to be in the same relation to one
another us in the schlieven, We present a more detailed comparison in §4.4 below.,
Incidentally, we prefer the colour contour plots to grey seale plots of the same
quantities because we believe that the eye is more sensitive to changes in colour than
to changes in contrast. We find that colour reveals more detail  such as very weak
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(@)

T ——

Fweure 5. (a) Schlieren photograph and (b, ¢) colour contour plots for a weak irregular shock
refraction, FNR at a CO,/CH, gas interface with £, =0.78 and «, = G0°.

waves or weak contact discontinuities — than black and white, or shades or grey. For
example, compare the clarity of the two contact discontinuities ey and ed, (Fgures
2f and 10e) which cmanate from the two shock triple points in figures 8(e) and 9(b).
Or compare the detail with which the reflected shock r and expansion ¢ are displayed
in the schlieren photograph in figure 14 (a) versus the colour contour plots in figure
14.(b).

4.3. Structure of the weak irregular refraction systems
4.3.1. The bound precursor refraction system, BPR

‘The regular systems RRE and RRR are well deseribed by the von Neumann
theory, and in more detail by our numerical results. When the shock critical angle iy
exceeded, @, > a,, x 34.4885°, the RRR system hecomes augmented with an
expansion wave e, which appears in the receiving gas (CH,), and with ity pressure
contours apparently centred on the refraction point R (figures 3¢, 4¢). The contours
at first diverge as they move away from £, but then swing around and refract into
the incident gas (CO,) where they converge into a compression downstream of the
reflected shock r. According to the von Neumann theory, there are no physically
acceptable solutions for &, > ., and the impedances of the transmitted and reflected
waves are unreal. For these reasons the system is irregular. The r and £ shocks now
have sharply increased curvatures near R, and furthermore £ is now locally inclined
forward of R, a, > in (figure 4¢). By contrast, for the regular systems £ s everywhere
inclined backwards, a, < In (figure 4a-d). Thustis a precursor wave for o, > a ., and
because it apparently moves along the gas interface at the same veloeity as i and r,
that iv (1.9) remaing satisficd, ¢ is therefore also a bound precursor. Like Abd- El-
Fattuh & Henderson we shalf call this system u ‘bound precursor refraction” (BPR).
In summary a BPR differs from an RRR both by the appearance of & fourth wave

Journal of Fiuid Mechanics,

lol. 224

Plate |

-0.328

()

0.231

-B1.312

HenDERSON, COLELLA & PUCKETT

FIGURE 5(b.c). For caption see facing page.

31.228

(Facing p. 14)



Journal of Fluid Mechanics. Wol, 224 Plate 2
h)

0804

FIGURE 9(b,c). For caption see facing page.

HENDERSON, CoLeiia & Puckerr

Refraction of shock waves at a slow-fust gas interfuce 15

Frauge 9. (a) Schlieren photograph and (b, ¢) colour contour plots for a twin Mach reflection
type refraction, TMR (see figure 2f), with £ = 0.18 and a, = 66° at a CO,/CH, gas interface.

and by the fact that ¢ leans forward (a, > ir) at the interface, whereas it leans
backwards (a, < i) for a RRR. The detailed structure of the BPR and especially of
the fourth wave as displayed in figure 4(e) have not been reported previously to our
knowledge. Indeed some doubt has been expressed as to whether a BPR is a basic
system ar is merely an experimental artifact (Catherasoo & Sturtevant 1983). Our
numerical results provide good evidence to support the existence of it as a basic
system.

4.3.2. The condition for the RRR == BPR transition

The shock critical angle a,, ix defined by the double root A; = A, of the von
Neumann theory (figure 3d), and this amounts to a generalization of the well-known
shock detachment criterion for regular/irregular transition in shock reflection.
Inspection of the polar diagrams reveals that the flow downstream of the reflected
shock is always supersonic, M, > {, for the A, solution, and accordingly the sonic
eriterion (or its generalization to refraction) proposed by Hornung & Taylor (1982)
cannot exist for the reflected shock. However, it ean exist for the transmitted shocek
t, and in fuct it does exist at an &, about 1° smaller than a,.. This difference is too
small for experiment to discriminate, and we have not done the detailed and
expensive computations necessary to decide the matter. Although the numerical
data show that the RRR=BPR transition is elose to the generalized detach-
ment/sonic point for the ¢ shock, experiment suggests that transition is delayed
to values of a; somewhat lurger than @, = a,.. In the experiments transition is
somewhat obscured by the wire frame on which the membrane was mounted, and
also by a thin fitm of silicone oil which was used to seal the wire to the shock tube
windows to reduce gas leakage. In view of this we conclude that transition occurs
cither at the generalized detachment/sonic point, or close to it.
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Ficone 6. Experimentat and computational wave angle data for a CO,/CH, gas interface with
g, = 0.78. Syuare symbols represent data from eomputations with a 10 % contamination of the ( ‘H,
by the (O, Circular symbols represent data from computations with pure gases. All other symbols
represent experimental data. 8, O, A. Transmitted shock angle a,: 0, o, x, reflected wave angle
a,ora,; o, e, +, side shock angle a,; [3, 0. A, interface deflection angle 8 1. O. +, trajectory
path angle x; see figure 2 for the definition of the wave angles. (Experimental data from Abd-l-
Fattah & Henderson 1978b.)

It is interesting to note that the condition a, = It must also be attained during the
transition RRR = BPR, because as this oceurs we have seen that (a, < In) > (a, >
ir). Therefore the condition corresponding to the normal critical angle a, defined by
(1.12) i forced to occur at the same condition as the shock critical angle a,., even
though a, < a,.

R

4.3.3. The free precursor refraction system, KPR

With steadily increasing a;, the ¢ wave cventually breaks loose from the i and 7
shocks and runs ahead of them along the gas interface (figure 4f b). The refraction
law has now been violated as with expression (1.10), and there is now a free precursor
refruction (FPR) in which the t wave moves ever further shead of ¢ and r with time.

It will be noticed that the pressure contours for the £ wave are now spread out at,
and near, the gas interface (figure 4-4), instead of being concentrated as for u shock
(figure 4¢). Thus tin a loeally smeared out or evanescent wave. However, further away
from the interface the contours do converge to form a coherent shock. The ¢ wave is
itself refracted from the CH, back into the (0, which means that its refraction is
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Praure 7. Comparizon of the wave speed ratio U /1 (see figure 2¢) for a CO,/CH, gas interface with
£, = 0.18. O. Computed data for pure gases; B3, computed data for 10% contamination of the CH,
by the COy; A, experimental data (from Abd-El-Fattah & Henderson 19786).

fovally fast slow, n > 1, The wave transmitted into the CO, is the side wave s (figure
3/, ¢). und it is also an evanescent wave. Since locally n > 1, then ja| > |a,]. The
contour plots show no sign of a reflected wave from the t-s refraction, nor does there
seem to be one in the experiments (presumably it is too weak to be resolved). Thus
the local system appears to consist only of the {—s pair. The 8 wave and the incident
shock { eventunlly encounter, and mutually modify, each other. The s contours
converge to the reflected shock 7 after passing through i, The modified shock k&,
continues to the disturbed gas interface where it is loeally refracted with total
internal reflection 8 = —1, 7' =0, Z, = 0. This means that k ix reflected as a centred
expansion wave, e, This last wave eventually overtakes 7 and causes slmost complete
mutual cancellation, so that finally a weak reflection is propagated into the
downstream CO, {figure 41-4). 1t is clear from both the experimental and numerical
results that ¢ is an evancscent wave. The numerical results show that ¢ is also
cevanescent but the experiments cannot resolve it. Henee the computation are
predicting a new result for this wave.

It is natural to consider the conditions where a bound precursor system becomes
a free precursor system or viee versa, BPR 2 FPR. This is associated with the
spreading out of the £ wave into a distributed compression near the interface and it
then runy shead of the § and r shocks along the interface. Therefore the transition
occurs with the violation of the refraction law (1.9), in other words (1.10) now applies.
The law is of course immediately re-established for the precursors

o _
sina, sina,

4.34. The free precursor von Neumann refraction system, FNR

Transition to yet another irregular refraction takes place as a; continues to
increase. 1t is charncterized by a weak Mach reflection appearing in the CO,. Some
pressure contours of it nre presented in figure 4(A) and a schlicren photograph and
colour graphies in figure 5(a -¢). Abd-El-Fattuh & Henderson (19786) calied this a
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{a) a, = 30°

(5) a, = 43°

[

Fiaure 8(a,b). For caption see facing page.

‘free precursor von Neumann refraction’ (FNR). See figures 2(d), 3(g), 4(k), and
5(a-¢) of this paper. The conditions for the FPR =FNR transition are not known
and our computations are not sufficiently detailed to form a hypothesis with any
confidence.

In summary the sequence of phenomena for the refraction of a weak shock at a
slow-fast gas interface with increasing angle of incidence a, is as follows:

RRE=RRR=BPR=FPR=FNR.

This sequence seems to be generally well supported by both the computations and
by the experiments.

4.4, Comparison of the numerical resulls with experiment
In the interests of making the comparison as precise as possible we used the same
values of the parameters (Y, Yo #e #e, & @) for our input data as Abd-El-Fattah &
Henderson measured in their experiments. This included using the data for the

(c) a, = 46°

@) a, = 66°

i

(e) a, = 66°

Fiatnk K. Contour plots of (a d) log P and {¢) log p from computations of a strong shock refraction
sequence, £ = 0.8, at a pure CO,/CH, gan interface. (The straight line running diagonally from
upper left to lower right represents the initial, undisturbed gas interface. Tt is not a pressure

contour.)

contaminated gas shown in table 1, and the same boundary cnnﬁgpration. §0me of
the computations were repested for the pure gases in order to obtain an estimate of
the sensitivity of the results to gas contaminution. The numerical data for thu‘pum
and the contaminated gases are compared with experiment in figures 6 and 7. Figure
6 shows a variety of wave angles as well as the interface detlection angle 8, (ﬁgur}» 2a)
and the trajectory path sngle x for the intersection of the i, k, 8 an‘d & waves (figure
2d). For the regular purt of the sequence, RRE S RRIR, the numerical results for the
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contaminated gas are everywhere in satisfactory agreement with experiment, but the
corresponding results for the pure gases show a significant diserepancy for the a;
data, but not for the a,,a,, and §, data. So only the «, data scem to be sensitive to
contamination, and that sensitivity is greatest near transition a, = a,, & 34.4885°
(A, = A,) where small variations in the contamination can cause significant changes to
a,. Thus, for regular refraction the a, data are sengitive to contamination while the
data for other angles are not. This is ascribed to the fact that incident and reflected
waves propagate in the CO, which is little affected by contamination because of the
large fraction of the volume it oceupies in the shock tube, while the £ wave propagates
in the CH, and this is significantly affected (table 1).

After transition to irregular refraction the numerical data for the contaminated
gas are again in agreement with experiment so long as, approximately, a, < 50°; but
significant discrepancies are evident for a, > 50°, particularly for the a, data. For
irregular refraction the ¢ wave is everywhere curved, and as a; > 50° increased we
found that this curvature became quite sharp near the gas interface. This made the
choice of where to draw the tangent to ¢ in order to measure a, at the interface
increasingly uncertain. The same difficulty occurred for both the schlicren
photographs and for the contour plots. We therefore looked for more robust data to
compare with the experiment, which we found in the measurements of the wave
velocitics Uy and U. The numerical data for U/U, are compared with experiment in
figure 7. These data include the computations for the pure and the contaminated
gases, and it will be noted that the results bracket the experiment data,

It should be remarked that the measurements of the gas contamination are only
average values obtained after the contaminated gases had been drawn from the
shock tube and individually sent to the thermal conduectivity meter. Therefore the
local contamination near the gas interface could have been significantly different
from the average value obtained at the meter. In view of the uncertaintien involved
we conclude that the agreement between the numerical data and experiment is
satisfactory.

5. Results and discussion for a strong refraction sequence
5.1. Wave structures in the sequence

A second series of computations was done for the CO,/CH, interface, except that
was now a strong shock, £ = 0.18; this work was restricted to the pure gases.
Selected contours are presented in figure 8, and a schlieren photograph together with
colour graphics are presented in figure 9 (plate 2). A comparison with experiment
cannot be precise because the effect of gas contamination has not been taken into
account in the computations. However, note that the computational results in
figures 9(b) and 9(c) clearly display all of the key features of the refraction found in
the schlieren photo in figure 9(a), especially the two-shock triple points i n-r and
s-n-r’ and the two contact discontinuities ed, and ed, emanating from these triple
points (figure 2f).

The polar diagrams are presented in figure 10. When a, is small enough to result
in regular refraction, the von Neumann theory provides three physically acceptable
solutions, namely two with reflected shocks A,, A, and one with a reflected expansion
¢, (figure 10a). It was the ¢, (RRE) solution which Abd-El-Fattah & Henderson
observed. With increasing a, one obtains the coincidence A, = A, =i = 4,, and then
the reflected shocks in the A,, A, (RRR) solutions degenerate to Mach lines (figure 106).
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Although this takes place at the angle of intromission a,,, & 35.94°, it has no physical
significance in this case because €, is not degenerate at this condition. Hence the
impedances are not equal, Z, # Z,, for the solution ¢, that is actua.!ly obxcrved.-
For a, > &, the A, A, solutions are unreal and at the same time we obtain a
second solution &, of the RRE type (figure 10¢). However, once more it was the ¢,
wolution that Abd-El-Fattah & Henderson observed. Clearly, at a,=a;, the
coincidence can be extended to 6,5 thus, A, = A, = ¢, = i = 4,. Notice, however, that

P
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Fieure 10. Polar diagrams for a strong shock refraction sequence with £, = 0.18 at a pure GO, /CH,
gos interface, (a) RRE, ¢ solution at a, = 30%; (b) RRE, ¢, rolution at a, = a,, = 35.05°. Note that,
€, is not a continuation of either the A,, or A, solutions, therefore the shoek critical angle for A, =
A, is irrelevant for transition to irregular refraction in this case; (¢) RRE, at o, = 37°; note there
are now two RRE solutions, ¢, and ¢,; the ¢, solution is observed in experiments; (d) RRE, at the
relevant shock critical angle, ¢, & ¢y, @, = a, = 48.204°; this is the transition condition for
RRE==TMR; (e) twin Mach reflection-refeaction TMR at a, = 86° > «,,.

the ¢, solution nowhere forms a coincidence with sither the A, A, solutions as it did
at the 4, point in the weak sequence. Consequently, by continuity no refraction of
the RRR type can appear in this strong sequence.

As a, continues to increase one eventually obtaing €, = ¢, (figure 104d), where the
isentropie ¢ is tangent to the ¢ polar. This again occurs at the shock critical angle
a,, & 37.79°, but it differs from the weak series in that the coineidenee is an RRE type
€, = €,, instead of the RRR type, A, = A,.

For a, > a,,, the refraction is irregular and both the experiments and the
computations agree that it is again a free precursor system. However, the numerical
results show that both the ¢ and the s waves are shocks and not cvanescent
compresgions as they were in the weak sequence. Structurally the system consists of
the precursor transmitted-side shock pair f-s, interacting with a single Mach
reflection triplet of shocks i-r—n (figure 10¢). Tho side shock 8 now interaets with the
Mach shock n, modifics it and produces the second reflected shock »', Consequently,
thore are two Mach refloctions in the incident gas, é-n-r, and s-n~r’, the refraction
will be called a ‘twin Much reflection—refraction’ (TMR). The ' shock undergoes total
internal reflection at the disturbed gas interface and gives rise to the reflected
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Ftaure 13. (a) Schlieren photograph and (b, ¢) colour contour plots for a twin regular reflection type

refraction, TRR (see figure 2¢) £, = 0.53, a, = 50.5°, at & CO,/CH, gas interface. See also the
caption to figure 5.

-0.328 0.513
expangion e, which in turn overtakes and attenuates r. Contact discontinuities ed, ©
and cd, appear at the MR triple points (figures 2f, 8¢, 9a, b and 10¢); of course they

are not visible in figures 8(d) and 9 (¢) pince these are contours of log p. There are now

three shear layers in the downstream flow, namely cd, and rd,, and the disturbed gas
interface.

5.2. Comparison of the numerical resulls with experiment

The numerical results are compared with the experiments data in figures 11 and 12.
As expected the discrepancy for the a, data is comparatively large because we did not
take into account the gas contamination. Qualitatively it is similar to the discrepancy
for the weak series in figure 8. The increasing size of the discrepancy for the irregular
refraction is again attributed to the uncertainty of measuring @, with increasing
curvature of the ¢ shock near the interface. The angle data for y,, x,, and §,, are
generally in satisfactory agreement, granted the numerical and experimental
uncertainties. These last measurements were made either for the CO, flow ficld, or
along its boundary (4,) and, as we have seen, such measurements are inscnsitive to
gas contamination. The curvature of the reflected shock r prevented us from making
reliable measurements of a,, while the short length of the side shock s similarly
prevented reliable measurements of a,. The discrepancies for &, and «, are significant
and are attributed to these uncertaintics.

In figure t1 the numerical data for U /U display a small systematic discrepancy
from the experimental data. This is qualitatively similar to the purc gas results
shown in figure 7, and is ascribed to the same cause, namely gas contamination.
Nevertheless, the agreement with experiment is quite reasonable,

-28.308 138.13
FIGURE 13(h,c). For caption see facing puge.
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Fiavrg 14, (a) Schlieren photugraph and (b,¢) colour contour plots for 8 twin von Neumann
irregular refraction, TNR (Abd-El-Fattah & Henderson 19785) at a CO,/CH, gas interface with
£, =0.53 and a, = 62°.

6. The boundary between the strong and the weak systems

We consider how a weak irregular refraction may be changed into a strong one, or
vice versa, FNR 2 TMR. This will be done by continuously reducing £, from £ =
0.78 where the system is weak, to § = 0.18, where it is strong. In the following
discussion the paramecters (y,, v, 4, #,) will be held constant and a, will be allowed
to vary only slightly while £ is decreased. We begin by considering the weak,
irregular refraction that we call FNR at £, = 0.78 (figures 4% and 5a-c). As §;
decreases the shock triple points Fy. F, (figures 2f and 3g) continuously approach the
quadruple point @ (figure 2¢) and then for some £, they coincide with it, ¥, = F, =
G. The weak Mach reflection has now vanished and the number of shocks in the
incident gas are reduced to four, i-s—r-k (figure 2¢). If we imagine that the CH, is
replaced by a rigid medium with the same boundaries, then the four-shock
interaction would amount to the twin regular reflection studied by Smith (1959).
Since the 7 and s shoeks are gencrally of uncqual strength, their interaction is
asymmetrical and a contact discontinuity avises in the downstream flow. A schlieren
photograph of this refraction, obtained by Abd-El-Fattah & Henderson with £, =
0.53 and a; = 50.5° is presented in figure 13 (a), together with colour contour plots
from the computations in figure (135, ¢) (plate 3). We shall call it a twin regular
reflectiotr-refraction (TRR). Actually the cited authors found that this system
existed for a range of £, and not just for a particular value on the boundary between
the strong and the weak systems. If €, = 0.53 is held constant and a, is now increased
to a, = 82°, then the four-shock system changes into the twin von Neumann system
(I'NR) (Abd-El-Fattah & Henderson 19786) shown in figure (4 (plate 4). Eventually,
however, as £ becomes small enough the four-shock systom in the TRR changos to
the twin Mach reflection characteristios of a TMR at £, = 0.18, and a, = 606° (figures
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2f, 8d,e, 9, and (0e). The condition for the TRR=TMR transition have been
discussed by Smith for reflection, and Abd-El-Fattah & Hendegson for refraction.

A variety of special conditions may be used to dpfine precisely the strong/weak
boundary. Some of them have been discussed by the above authors. Here we notice
that for weak systems the regular/irregular transition RRR == BPPR takes place at
the von Neumann tangency point A, = A,, that is af a,, but fof strong systems the
tangency condition has a different character €, = ¢, 5o RRE ='TMR, but again at
a,.. It scems plausible therefore to define the stropg/weak boundary at the point
where both conditions are in coincidence, A, = A, =€, = ¢, = i = A,. For the pure gas
interface CO,/CH, this is approximately at £, = £, = 0.471 and a, = 34.05°. So
an incident shock i has a weak refraction whenevey £ > £, and a strong one when
£ < Xo-

Abd-El-Fattah & Henderson used a different copdition for the boundary, based
upon a generalization of the von Neumann classificgtion for shagk reflection, but the
definition of the boundary is somewhat arbitrary.

There is some hint that in our results for the stryng sequenge § = .18, the four-
shock TRR system appears immediately after trangition to an irregular refraction.
However, it is not resolved uncquivoeally, and in any event a TMR is certainly
present when a, increases by only a small further amount. .

Each regular or irregular wave system occurs for definite ranges of values of the
system parameters (v, v, g, &, £, @), and it is possible to produce a topological plot
of £ versus a, for a given combination of gases (Yo Yo o, #). Abd-El-Fattah &
Henderson (1978b6) did this for the CO,/CH, interface and we refer the interested
reader there for further details.

7. Concluding remarks

In our computations of the weak refraction sequence we used the same input data
as Abd-El-Fattah & Henderson had measured in their expegiments. This included
the effects of gas contamination due to leakage and diffusion across the membrane,
and also the inertia of the membrane. The object was to test the validity of the
computations by obtaining as precise a comparison with experiment as possible. We
found that the membrane inertia made very little difference and we ignored it in our
lator computations. However, our data for the wave angle a, of the transmitted
shock was scnsitive to gas contamination, and to & lesser extent 50 was the wave
velocity U data of this shock. None of the other data displayed such sensitivity, and
this was ascribed to the fact that a, and U were measured for the CH, component
which was significantly affected by contamination {table 1) whereas the other data,
X.a,,a,, and so on, were measured for the CO, camponent which was very little
affected by the contamination,

Our computations were everywhere in reasonable sgreement with expuriment
when gas contamination was taken into account, except for the «, data when,
approximately, a, > 50°. That discrepancy was gscribed to the uncertainty of
making accurate measurements of &, owing to the ingreasingly large curvature of the
transmitted wave with increasing a, This uncprtainty applied to both the
experimental data and to measurements made from the contour plots.

The computations were done for inviscid gases and since the results were generally
in good agreement with experiment it is concluded Phat viscosity had no significant
effect on the measurements. Presumably viscosity would be of most importance in

' (X1 T oy . " . - 13 1 A} ‘
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guses. The computations allowed vorticity production and transport but not viscous
diffusion.

"The computations resolved the structure of the bound precursor refraction (BPR),
and revealed the presence of s fourth wave, which was an expansion and apparently
centred on the refraction point. After transition to a free precursor system, BPR =
FPR, the transmitted /side shock pair were found to be smeared out in the region of
the gas interfuce, which we called evanescent waves.

Similar effects were found in our computations for stronger refraction and were
ascribed to the same causes. Our computations displayed all the principle features
found in cxperiment, such as local single Mach reflection-refractions, twin Mach
reflection refructions, free precursor shocks, contact discontinuitics, reflected
expansion waves, and so on, In particular our computations were able to accurately
and sharply resolve contact discontinuities, for example those emanating from shock
triple points (figures 10, 13, and 14). This has historically been a difficult task for
numerieal methods primarily designed to capture shocks. We conclude that the code
does provide a satisfactory ropresentation of the refraction phenomena even though
it ignores the effects of viscosity and three-dimensionality.

This work was performed under the auspices of the US Department of Energy at
the Lawrence Livermore National Laboratory under eontract number W-7405-
ENG-48 and partially supported by the Applied Mathematical Sciences subprogram
of the Office of Energy Research under contract number W-7405-Eng-48 and the
Defense Nuclear Ageney under IACRO 88-873.
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