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FIDIL: A LANGUAGE FOR SCIENTIFIC PROGRAMMING 

PAUL N. HILFINGER. AND PHILLIP COLELLAt 

Abstract. FIDIL is a new programming language for scientific computation. In this paper, we give 
a. brief overview of the language, largely consisting of several extended examples from computational 
fluid dynamics. 

1. Introduction. One fundamental goal of research in programming language 
design is to provide a better fit between problems and programming notation. In 
scientific computation, this quest is sometimes described as one of reducing the "se­
mantic distance" between abstract mathematical descriptions of numerical methods 
and programs that implement them-in effect, of making abstract mathematical de­
scriptions into programs. In its most ideal form, such a goal is generations beyond 
the current state of the art. However, there are intermediate points along the way to 
which we might aspire. In this paper, we describe one of them. 

Currently, most numerical scientific programming is done in FORTRAN. This 
language has served its purpose well, but the basic operators, quantities, and defini­
tional facilities that it supports are rather limited. Under the "FORTRAN model" 
of computation, programs consist of sequences of individual arithmetic operations 
on numbers contained in named scalar variables or in individual elements of arrays. 
FORTRAN provides a certain amount of abstraction in the form of subprograms, but 
these are sufficiently clumsy to use and define that in practice their application is lim­
ited (at least when measured against the practice in other programming languages). 
Despite these oft-cited limitations~ the scientific community has largely adapted itself 
to FORTRAN, and has developed a large body of software in the form of libraries 
and application code. 

l\fodern advances in numerical algorithms-motivated both by new applications 
and increased processing power-have led to increasingly complex programs, have 
made the task of converting algorithms to programs increasingly difficult, and thus 
have made it increasingly attractive to autolnate this conversion. One approach to 
automation is to provide a programming language that makes it easier to write about 
more complex, "bigger" entities: about operators on arrays rather than on individual 
array elements, about index sets with more general shapes than rectangles, and so 
forth. \Ve have taken just this approach with the FIDIL (FInite DIfference) language, 
\vhich we will describe in this article. 

It is very difficult to evaluate a programming language, especially in the very early 
stages of its deployment. In order to give the reader some basis for judgment, we will 
present (in section 4) several realistic examples of FIDIL's use that are somewhat 
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longer than is traditional for an overview paper about a programming language. We 
will start with a brief overview of FIDIL, first with a description of features common 
to most progralDJlling languages (section 2), and then with a description of features 
specifically intended for scientific computation (section 3). 

The FIDIL system is still under development. Our experimental compiler is a 
Common Lisp program that runs on workstations and translates FIDIL into FOR­
TRAN programs for a Cray X-MP. The use of FORTRAN as an intermediate language 
makes it relatively easy to use existing FORTRAN libraries, and may ease the task 
of porting the compiler to other machines. 

2. Overview of general-purpose facilities. FIDIL, like any programming 
language built with a specific problem area in mind, comprises not only features 
specific to that area, but also a more general framework such as one might find in any 
language. \Ve will begin by describing this framework. 

2.1. General Program Structure. A FIDIL program consists of a sequence 
of declarations of constants and variables. Variable declarations use the "type list-of­
variable-names" format of FORTRAN and the ALGOL family, as in 

integer x, y; 
Constant declarations all have the form "let 81 = db 82 = d2 , • •• ," which evaluates 
the di in order and defines the symbols 8i to have those values. As illustrated in the 
following example, constants can be ordinary scalar values, arrays (called maps In 
FIDILj see section 3), functions, or types. 

let 
n = 3, /* Scalar con!Jtant */ 
V = [0, 0, 0, 1], /* Array constant * / 
rad = proc (real deg) -> real: 0.017453293 * deg, 

/ * A function * / 
Point = struct [ real x, y ]; 

/* A type */ 
Declarations may also be nested inside function definitions, in which case, as is usual 
for languages in the ALGOL family, they apply only within that function and are 
computed once for each call of the function. To accommodate separate compilation, 
variables and certain constants can be imported--defined externally--or exported for 
import by other programs. In the case of variables, this capability corresponds to 
COlvUvION blocks in FORTRAN. The effect of an executable FIDIL program as a 
whole is defined as a call to a function with the distinguished name main. 

Constant declarations and assignment-free expressions play an important role in 
FIDIL; the language has a distinct bias toward their use in places ,vhere programmers 
in FORTRAN, ALGOL, C, or Pascal might use sequences of assignments. It is not 
that such traditional programming is any more difficult in FIDIL than in FORTRAN, 
for example, but rather that it is less necessary. The bias takes the form of primitive 
operations for building arbitrarily complex objects in single expressions. As we shall 
illustrate in sections 3 and 4, the end result of this bias is that the execution of a 
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FIDIL program tends to consist of a sequence of assignment statements in which the 
computation of the value to be assigned is very large; that is, there is a great deal 
of computation between assignment statements. There are two reasons this effect is 
desirable. First, at an abstract level, the scientific programmer deals with "large" 
operations on large objects: decompositions of matrices, applications of difference 
operators to all values on a grid. It is only an artifact of conventional programming 
languages-inherited from underlying machine architectures-that such operations 
ultimately must be written as individual operations on scalar variables. Second, 
from the concrete level of the compiler, the analysis and transformation necessary to 
take advantage of pipelined or parallel machine architectures is generally easier when 
assignment statements are minimized. 

FIDIL requires that all named entities be declared and that each declared entity 
have a single type, which may be indicated explicitly, as for variable declarations, 
or inherited from the entity's definition, as for constants. These types include the 
usual scalar types-integers, reals, complex numbers, booleans, and characters,~ 
domain and map types (which encompass arrays), functional types, and record types. 
Since scalar types in FIDIL do not differ significantly from their realization in other 
languages, we shall say no more about them, and concentrate instead on domain and 
map types in section 3, functions and functional types in section 2.3, and record types 
in section 2.2. 

2.2. Record Types. A record value (or variable), also called a record, is a 
collection of named values (or variables), called fields. Record types describe a class 
of records by giving the number, names, and types of the fields of all records in this 
class. 

let 
State struct [ real x, y, px, py, m ] ; 

State S; 
The declarations above define State to be a record type whose values have four real 
fields, and then define S to be a State variable. S may be assigned to or passed as 
a parameter to subprograms, just as for objects of scalar types. The individual fields 
of S are accessible using field selectors, whicll are notated with a functional syntax as 
in the following example. 

x(S) := px(S) j m * dt + x(S); 
In keeping with previous comments about the infrequency of assignment, a FIDIL 
programmer might write the following instead. 

S := State [ px(S)jm * dt, py(S)/m *dt, px(S) + jx*dt, py(S) + fy*dt, m(S)J; 
The right-hand side of this latter assignment statement illustrates the use of a record 
constructor to create an entire record at once. 

2.3. Defining functions and operators. Earlier, we saw a definition of a sim­
ple function for converting degrees to radians. 
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let 
rad = proc (real deg) -> real: 0.017453293 * deg; 

The syntax here is suggestive: it has the same form as the definition of a named 
constant, suggesting that the phrase to the right of the equals sign denotes a value 
in its own right. This is indeed the case; the expression defining the function Tad is 
a subprogram literal. It has no name in isolation, but simply denotes "a function 
taking a single real parameter, call it deg, and returning the real value computed by 
the formula 0.017453293 * deg." The most common use for subprogram literals is in 
the context shown-as definitions of function names-but they are sometimes useful 
as anonymous function arguments to other subprograms and, as we shall see later, in 
defining functionals. 

One prominent characteristic of mathematical notation is our tendency to reuse 
the same notation for multiple purposes. Programming languages present more op­
portunities for such reuse, since they tend to introduce mathematically artificial 
distinctions-as between "short real" numbers and "long rear' numbers. FIDIL al­
lows the overloading of notation so that a conventional or suggestive name may be 
used wherever it is appropriate. Hence, the definition of rad above may be extended 
to cover long real numbers as well. 

extend 
rad proc (long real deg) - > long real: 0.0174532935199433 * deg; 

The compiler detennines the particular definition of Tad to use by the context of its 
use. 

Another characteristic of mathematical notation, as constrasted with many pro­
gramming languages, is that function calls are notated not just with alphanumeric 
names, but also with other operators having a more varied syntax. To accomodate 
this, FIDIL allows the definition and overloading of infix (binary), prefix, and postfix 
operators as functions or procedures. We might, for example, extend addition to work 
on State variables, as defined above. 

extend 
+ = proc (State pl,p2) -> State: 

begin 
let 

mc = m(p1)+m(p2); 
return State [ (x(pl)*m(p1)+x(p2)*m(p2»/mc, 

(y(pl )*m(p1 )+y(p2)*m(p2»/ mc, 
px(p1)+px(p2), py(pl)+py(p2), m(pl)+m(p2) ]; 

end; 
Besides showing the extension of '+' to States, this example illustrates a few minor 
points of syntax: the use of begin and end to provide a way of grouping several 
declarations and statements into a single statement or expression, and the use of the 
exit construct return to indicate the value of a function. 
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One common form of function definition defines one function as a specialization 
of another with certain parameter values fixed. For example, the following two dec­
larqtions are identical. The second uses a partial fUDction closure to abbreviate the 
defini tion. 

let 
/ = proc (State p) - > Force: attraction(pO, p); 

let 
/ = attraction(pO, ?); 

Here, we assume that the function attraction is previously defined to compute the 
contribution to the force (gravitational or whatever) on its second argument due to 
its first. The notation attraction(pO,?) denotes a function of one argument that uses 
attraction to compute its result, using pO as the first argument. 

2.4. Functionals. FIDIL has been designed to accomodate "functional" pro­
gramming, in which the principal operations employed are the applications of pure 
(side-effect-free or global assignment-free) functions to structured data. As we shall 
see, this particular programming method makes heavy use of functions on functions. 

Of course, most conventional programming languages, including FORTRAN. pro­
vide the ability to pass functions as arguments to other subprograms. FIDIL goes 
further and allows functions to be returned as well, and in general to be calculated 
with the aid of appropriate operators. As an example, consider the extension of the 
(by now much-abused) operator '+' to functions; the sum of two unary functions is 
a new unary function that produces the sum of these functions' values. It can be 
defined as follows. 

let 
Unary Function = proc (real x) - > real; 

extend 

+= 
proc (UnaryFunction fl, /2) - > UnaryFunction: /* (1) * / 

proc (real y) -> real: fl(y) + f2(y); /* (2) */ 
The fragnlent above first defines UnaryFunction as a mnemonic synonym for 

proc (real x) - > real 
which is, in isolation, a type describing values that are "procedures taking a single 
real arguments and returning a real result." Next, the subprogram literal giving the 
value of '+' indicates that '+' is a binary operator on unary functions /1 and f2-line 
(I)-and that its value is the subprogram that takes a real argument, x, and returns 
the sum of /1 and /2 at y-line (2). 

" 2.5. Generic subprograms. As it stands, the definition of '+' in section 2.4 
works only for functions on real values. A definition of precisely the same form makes 
perfect sense for functions of any numeric type, however. FIDIL provides a notation 
whereby a single generic subprogram declaration can serve essentially as the template 
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for an entire family of specific subprogram declarations. Thus, we can generalize the 
addition of functions as follows. 

extend 
+ = proc (proc (?T x) ->?T /1, /2) -> proc (?T x) -> ?T: 

proc (T y) -> T: /l(y) + /2(y}; 
Here, the notation '?T indicates a pattern variable for which any type may be substi­
tuted. This definition of'+' applies to any pair of (unary) functions on the same type, 
T, producing another function on T. The resulting function uses whatever definition 
of '+' is appropriate for values of type T. The actual rules here are somewhat tricky, 
since it is possible in principle to have the definition of '+' on T differ from place 
to place in a program. For the purposes of this paper, we shall simply assume that 
this situation does not occur and not go into the specific rules governing the selection 
of '+', on the general assumption that an unhealthy preoccupation with pathologies 
makes for poor language design. 

2.6. Standard control constructs. FIDIL's constructs for conditional and it­
erative execution differ only in syntax from those of other languages. Figure 1 illus­
trates both in two fragments showing a sequential and then a binary search. In each 
case, the search routine accepts a one-dimensional array with a least index of 0 and 
a value to search for in the array, returning either the index of the value in the array, 
or -1 if the value does not appear. 

The if-elif-else .. {i construct, taken directly from Algol 68, allows the programmer 
to indicate a sequence of conditions and the desired computations to be performed 
under each of those conditions. It may be used either as a statement, to indicate 
which of several imperative actions to take, or as an expression, to indicate which of 
several possible expressions to compute. As we shall see in section 3.2, the conditional 
construct also extends to conditions that produce arrays of logical values, rather than 
single logical values. 

The do-od construct indicates an infinite loop, which can be exited by an explicit 
exit or return statement (the latter causing exit from the enclosing subprogram as 
well.) A preceding for clause specifies an index set for the iterations. The fragment 
above illustrates a simple iteration by 1 through a range of integers. 110re general iter­
ations are also possible. For example, one can iterate two variables over a rectangular 
set of integer pairs using the following construct. 

for (i) j) from [1..N, l..M] do ... od; 
Here, the pairs are enumerated in row nlajor order (j varies most rapidly). One can 
specify strides other than one, as in the follolving. 

for i from [1. .N] by 2 do ... odj 

3. Domains and Maps. Two classes of data type, domains and maps, playa 
central role in FIDIL, because of their natural applications in algorithms that involve 
discretizing differential equations. Together, they constitute an extension of the array 
types universally found in other programming languages. An array in a language such 
as FORTRAN can be thought of as a nlapping from some subset of Z n (the set of 
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let 
searchl = 

proc (Vector A; integer x) - > integer: 
for i from [0 .. upb( A)] do 

if z = A [i] then return i; 
elif z > A [i] then return -1; 
ii; 

od, 
search2 = 

proc (Vector A; integer x) - > integer: 
begin 

in teger i, j; 
i := 0; j:= upb(A); 
do 

if i >= j 
then exit; 

else 
let m = (i+j) div 2; 
if A[m] >= x then j:= m; 
else i := m+l; 
ii; 

fl.; 
od; 
return 

end; 

if j < i then -1 
elif A [i] = z then i 
else -1 
fl.; 

FIG. 1. Two searches: searchl is linear and search2 is binary. 
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n-tuples of integers) to some codomain of values. Unlike mappings that are defined as 
subroutines, arrays can be modified at individual points in the index set. The index 
set of a conventional array is finite, rectangular, and constant throughout the lifetime 
of the array. One typically denotes operations on arrays with dimension-by.dimension 
loops over the index set, indicating an action to be performed for each data value in 
the array as an explicit function of the index of that value. 

Maps are the FIDIL data objects corresponding to arrays. Unlike conventional 
arrays, however, their index set need not be rectangular or fixed, and the primitive 
operations provided by FIDIL encourage the programmer to describe operations upon 
them with single expressions that deal with all their values at once, generally without 
explicit reference to indices. To accomplish this, the concept of array is split into that 
of a domain, which corresponds to an index set and contains tuples of integers, and 
of a map, which consists of a domain and a set of values, one for each element of the 
domain. 

3.1. Domains and maps with fixed domain. \Ve use the notation domain[n] 
to denote the type of an n-dimensional index set. A variable declared 

domain [2] D; 
can contain arbitrary sets of pairs of integers. A particular rectangular domain may 
be generated using a domain constructor, as in the following example, which sets D 
to the index set of an N by M FORTRAN array. 

D := [ 1 .. N, 1 .. M]; 
Several standard set operations apply to domains; the operators' +', '-', and ,*, denote 
union, set difference, and intersection, respectively. In addition, there are several 
operations, summarized in Table 1, that are appropriate for index sets. 

For a domain D, the notation 
[D] T X; 

declares a variable X that is a map with index set D and element values of type T. 
The type T (the codomain) may be any type; it is not restricted to scalar types. As a 
shorthand, a simple rectangular domain constructor may also be used to denote the 
domain, as in the following. 

[1 .. 10, 1 .. M ] T Y; 
In both these cases, the domain is evaluated at the time the variable is declared and 
remains fixed throughout the variable~s lifethne. 

The precise domains of formal paralneters to procedures need not be specified, 
but may be supplied by the actual parameters at the time of call, as in FORTRAN. 
For example, the following header is appropriate for a function that solves a system 
of linear equations Ax = b. 

let 
solve = proc ( [*2] real A; [] real b; ref [] real z) : ... 

The notation' [*2]' indicates that the index sets of A is a two-dimensional domain 
whose contents is given by the arguments at the time of call. The notation' []' is 
short for' [*1].' The dimensionality of the domain may be supplied by the call as 

8 



well. For example, the follo'wing header is appropriate for a function that finds the 
largest element in an array. 

let 
largest = proc ( [*?n] real A ) -> real: ... 

Again, in all of these cases, the index set of the formal parameters so defined is taken 
to be fixed over the call. 

3.2. Operations on maps. FIDIL provides for ordinary access to individual 
elements of a map. If d is an element of the domain of a map A, then A Ed] is the 
element of A at index position d. However, FIDIL encourages the programmer to 
avoid the use of this construct and to try to deal with entire arrays at once. There 
is an extensive set of pre-defined standard functions and constructs for forming map­
valued expressions. This in turn makes it easier for the compiler to make use of 
implementation techniques, such as vectorization or parallel processing, that process 
the entire array efficiently. 

As for arrays in most modem languages, entire FIDIL maps may be assigned in 
a single operation, as in 

A := map·valued expression; 
Likewise, constant map values may be defined in one declaration: 

let C == map-valued expression; 
Finally, there are various ways to assign to only a portion of a map. The statement 

A *:== E; 
for a map-valued expression E, assigns to only those elements A [p] for which p is an 
element of both the domains of A and E. 

The map constructor allows specification of the elements and index set of an entire 
map in one expression. The statement 

V:== [ E1, E 2, ••• ] 

assigns to Va one-rumensional map such that V[i] == E i . One may also use a rule to 
specify the elements of a map~ as in the following. 

V:== [ i from domainOf( V): I( i) ] j 
This assigns to Va map whose element with index i is I( i). The function domainOf 
yields the domain of its argument (a map). In the case of a constant map, the "i from" 
phrase is superfluous and may he onritted, as in 

[ domainOf( V): 0.0]; 
which yields a map that is identically 0 on the domain of V. 

A programmer can specify maps as restrictions of other maps or as unions of a 
set of maps having disjoint domains. The following definitions first use the restriction 
operator, on, to cause inner to be a copy of the portion of A whose indices are 
between 1 and 99 and rim to contain the values of B for the other indices of A. 
Finally, they define C to have the same interior as A and border as B, using the map 
union operator, '( +).' 

let 
A = [ p from [0 .. 100, 0 .. 100] : g(p) ], 
B == [ p from domainOf(A) : h(p) ]) 
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inner == A on [1. .99, 1..99], 
rim == Bon (domainOf(A) - domainOf(inside», 
C==A(+)B; 

One of the most important operations in FIDIL is the "apply all't functional, 
denoted by the postfix operator' @'. Suppose that 9 is defined as follows. 

let 
9 == proc (real x,y) -> real: ... j 

Then the expression' g@' denotes a function on maps whose codomain is real that 
yields a map whose codomain is real. Formally, for maps (or map-valued expressions) 
A and B, we have the following. 

g@(A,B) = [ i from domainOf(A) • domainOf(B) : g(A [i], B [i]) ] 
That is, g@(A,B) yields a map whose domain is the intersection of the domains of the 
maps A and B and whose value at each point in that intersection is found by applying 
the pointwise operator 9 to the values of A and B at that point. 

For notational convenience, the standard arithmetic operators, comparison op­
erators, and certain others are already overloaded to operate on maps, so that, for 
example, A+B, denotes a map whose elements are the sums of corresponding elements 
of A and B. These operators are also overloaded to take a scalar as one operand and a 
map as the other, with the usual meanings. Thus, 2.0 • A is the result of multiplying 
each element of A by 2.0. 

The conditional expression also extends automatically to take logical-valued 
maps as its conditional test. For example, the following statement defines A [i] to be 
taken from B at all indices where B [i] is non-negative, and otherwise from C. 

let A == if B >== 0 then B else C ti; 
The expression B >== 0 evaluates to a map from the domain of B to logical values. 
For those indices at which B ~ 0, A is defined to agree with B. For those indices 
at which C is defined and B < 0, A and C agree. Another way of expressing tIllS 
is to use the standard function toDomain, which converts a logical-valued map to a 
domain containing exactly those indices at which the map has a true value: 

let A == (B on toDomain(B >== 0» (+) (C on toDomain(B < 0)) 
Many map operations of interest in finite-difference methods are functions of 

neighbors of a map element, and not just the element itself.' To accommodate such 
operations, FIDIL extends the shift operations on domains (Table 1) to maps in the 
obvious way (see Tables 2 and 3). Thus, after the definition 

let C == A« [1,1]; 
the map C has the property that C [[2,2]] is equal to A [[1,1]], and in general, that 

C[p] ==A[p- [1,1]] 
This last equivalence also illustrates the extension of arithmetic operators to maps: 
elements of a t\vo-dimensiol1al dODlain are pairs of integers, represented as one-dimen­
sional maps of two integers such as p. The subtraction p - [1,1], is therefore the 
result of subtracting 1 from each element of p. 

The apply-all and shift operators allow the succinct description of difference op­
erators. For example, consider a map defined to sample the values of a function fat 
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Expression 

valtype(D) 

pin D 

lwb(D), upb(D) 

Meaning 

For a domain D: shorthand for the type of the elements 
contained in D. If D is a domain [n] for n > 1, then 
valtype(D) is [l..n] integer. For n = 1, valtype(D) 
is integer. 

Union of Dl and D 2 • 

Intersection of Dl and D 2• 

Set difference of Dl and D 2 • 

A logical expression that is true iff p (of type val­
type(D» is a member of D. 

For D a domain[n]: A value of type valtype(D) 
whose kth component is the minimum (lwb) or maximum 
(upb) value of of the kth components of the elements of 
D. 

ahift(D, S), D« S Where S is of type valtype(D) (or integer ifn = 1) 
and n is the arity of D: The domain {d + Sid in D}. 

shifteD) Same as shifteD, -lwb(D». 

contract( D, S) 

expandeD, S) 
accrete(D) 

boundary( D) 

The domain {d div Sid in D}. 

The domain {d*Sld in D}. 

The set of points that are within a distance 1 in all 
coordinates from some point of D. 

accrete(D) - D. 
TABLE 1 

Some standard operations on domains. 

N + 1 discrete points between 0 and 1. 
let fhat = [ i from [0 .. N] : f(i * (l.OIN» J; 

Then a discrete approximation to the first derivative of f over this range is given by 
the following definition. 

let df = (fhat - <fhat < < [1])) * N; 
'Vorking this out by hand will reveal that 

df [1] = (df [1] -df [0] )*N, df [2] = (df [2] -df [1] )*N, ... 
Because the domain of fhat does not contain N + 1 and that of fhat < < [1] does not 
contain 0, the domain of df is [1. .N]. 

3.3. Maps with flexible domains. Map variables need not have fixed domains. 
The following declaration indicates that the domain of front, a two-dimensional array 
of States, can vary over time. 

flex [*2] State front; 
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Expression 

NullMap(n, type) 

domainOf(X) 

toDomain(X) 

image(X) 

upb(X), lwb(X) 

X#Y 

shift(X,S), X «S 
shift(X) 

contract(X, S) 

expand(X,S) 

XonD 

x (+) Y 

Meaning 

The null n-dimensional map with codomain type. 

The domain of map X. May also be assigned to. 

{ p from domainOf(X) : X [p] }, where X is a logical 
map. 

where X is a map whose codomain is of type [*n] in­
teger: the domain {dIX(P] = d for some pl. 

upb( domainOf(X», lwb( domainOf(X» 

For X and Y maps such that Y~s codomain is val­
type(domainOf(X»: a map object-assignable if X 
is assignable-such that 

(X#Y)[p] = X[Y[p]]. 
This is the composition of X and Y; its domain is 

{p E domainOf(Y) I Y(pJ E domainOf( X)} . 
where S is a [1..n] integer (an integer for n = 1), with 
default value .lwb( X), and n is the arity of X: the map 

X # [p from domainOf(X): p-S]. 
The operator shift, as well as contract and expand below, 
yields an object that is assignable if X is assignable. 

X # [p from contract(domainOf(X), S): S*p]. 

X # [p from expand( domainOf(X), S): piS]. 

The map X restricted to domain D. Also assignable if 
X is. 
where domainOf(X) n domainOf( Y) = {}: the union 
of the graphs of X and Y, whose codomains must be 
identical and whose domains must be of identical arity. 

TABLE 2 
Some standard operations on maps, part 1. 
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Expression 

F@ 

trace(A,S) 

Meaning 

Concatenation of the E i • There must be a type T such 
that each Ei is either a 1-dimensional map with a con­
tiguous domain and codomain T, or a value of type T 
(which is treated treated as a one-element map with 
lower bound 0). The result has the same lower bound 
as El and a length equal to the sum of the lengths of 
the E i . 

Assuming that F takes arguments of type Ti and returns 
a result of type T: the (generic) function extending F 
to arguments of type [Di] T, and return type D, where 
the Di are domains of the same arity and D is the inter­
section of the Di. The result of applying this function is 
the result of applying F pointwise to the elements cor­
responding to the intersection of the argument domains. 

for F as above returning type Tl : The extension of F 
to arguments of types [DiJT as above, returning a value 
of type [DJ ]Tl defined by 

F<@>(Xl, ... ,Xn) 
== F@(xI, ... ,xn ) (+) (Xl on (Dt - D». 

where S is an integer i l or S == [it, ... , ir J, A is a map 
with a rectangular domain of ari ty n, 0 < r < n, and 
1 ~ it < ... < ir $; n: The map B of arity n - r defined 
as follows. 

B(jb' .. ,iil-I, i'l +b ... ,inJ = 
~ UpbCA,id A[' . k' . J 
L...k= lwb(A ,it} Jt, ... ,)il-I, ,Ji1 +b ... ,In . 

That is, indices i i are replaced by an index variable k 
and summed, for each value of the other indices. To be 
well defined, the bounds of all the dimensions i m of A 
must be identical. If n - r = 0, the result is a scalar. 

TABLE 3 
Some standard operators on maps, part 2. 
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let 
Unary = proc(?T x) -> ?T; 

extend 

let 

let 

# = proc( Unary 11,12) -> Unary: /* 11 composed with 12 */ 
proc(T x) -> T: Il(f2(x», 

+ = proc( Unary 11,12) - > Unary: 
proc(T x) -> T: Il(x) + f2(x), 

* = proc( Unary 11,/2) -> Unary: 
proc(T x) -> T: Il(x) .. 12(x), 

* = proc( Unary I; ? T a) - > Unary: /* Scalar multiplication .. / 
proc(T x) -> T: f(x) .. a, 

* = proc(? T a; Unary I) - > Unary: 
proc(T x) -> T: a .. I(x), 

Id = proc(?T I) -> ?T: I; /* Identity */ 

/* Shift operators: for map A, (El(k»(A) = A « [k,O] */ 
E1 = proc(integer k) - > Unary: 8hift(? ,[k,O]), 
E2 = proc(integer k) - > Unary: 8hift(? ,[O,k]); 

Div = proc ([1..2] [*2] ? T x) - > [*2] ? T: 
(Id - El(l»(x[l]) + (Id - E2(1»(x[2]); 

FIG. 2. A simple operator calculus. 

One can set the domain of such a map directly, as in the following assignment. 
domainOf (front) := ... ; 

Alternatively, one can assign a map value with an arbitrary two-dimensional domain 
to front as a whole: 

fro nt : = [ i from D : h ( i) ]; 
An important use of flexible array types is in specifying "ragged" arrays. For 

example, consider the type BinGrid defined as follows. 
let 

Bin = flex [] State; 
BinGrid = [D] Bin; 

Each Bin has a one-dimensional domain that is independent of that of any other Bin 
in a BinGrid. As its name might suggest, such a data type might describe the state 
of a system of particles distributed by spatial position into a set of bins. 

3.4. An illustrative operator calculus. Figure 2 displays a set of definition 
that we will use later. These extensions of ari thmetic and other opera.tors allow the 
succinct description of new difference operators. 
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4. Examples. In this section, we will describe the implementation in FIDIL of 
two sets of algorithms from numerical PDE's: particle methods for the vorticity formu­
lation of Euler's equations, and finite difference methods for hyperbolic conservation 
laws. For each case, we will present a simple algorithm, and then use that simple 
algorithm as a building block for a more complex, but efficient algorithm for solving 
the problem. We will restrict our attention to problems in two space dimensions, 
since that is the case for which there are FORTRAN implementations for all of these 
algori thms. 

4 .. 1. Example 1: Vortex methods. Euler's equations for the dynamics of an 
inviscid incompressible fluid in two space dimensions can be written in terms of trans­
port of a scalar vorticity w as follows. 

oW -+U· VW = 0 
8t 

w = w(x,t) E R,x E R2 

u = K *w = f K(x - x')w(x'}dx' 

The evolution of the vorticity w is given by advection by a velocity field u that 
is a non-local function of w: u = K * w = V x (d -lW). The velocity u satisfies 
the incompressibility condition V . u = 0, so that the total vorticity in the system is 
conserved. If we consider Lagrangian trajectories xC t) satisfying 

(1) 
dx 
dt = u(x(t}, t), 

then the vorticity along those trajectories remains unchanged: 

dw ow dx ow 
Tt(x(t), t) = at + dt' Vw = at + u, \7w = 0, 

i.e., w(x(t), t) = w(x(O), 0). 
Vortex methods use a particle representation of the vorticity as its fundamental 

discretization (see Chorin [4] ). 

w(x, t) ~ ~WjJ..;(lx - xit)!), /6{x) = ;21 (';1) . 
15 



The {unction 16 is a smoothed approximation to a delta function, with 

211" l f(r)rdr = 1, f(r) = 0 for r > 1. 

The discretized dynamics are intended to mimic the Lagrangian dynamics of the 
vorticity given by (1). In semidiscrete form, they are given by the following. 

dXi 
U(Xi) 

dt -

(2) U(Xi) - 2: K6(xj - Xj)Wj 
j 

Ks(x) - K * 16(x). 

Since 16 is a function of Ixl only, explicit fonnulas can be given for K 6, for example, 
when f is a polynomial. In any case, 1<6 = 1< if Ixi > ~. 

Given the formula (2) for the velocity field evaluated at all the particle locations, 
straightforward application of some explicit ODE integration technique, which would 
call a procedure to evaluation u, will yield a discretization in time. In figure 3, we give 
a FIDIL program for evaluating the right-hand side of the ODE (2). The program 
is divided into two procedures. The first procedure vortex_blob evaluates the velocity 
field at an arbitrary point, x E R 2: u(x) = 'Ej I<6(x - Xj)Wj. The cutoff function ffJ 
used here is due to Rald [5], and leads to a K s given by 

I<s(x) 

where 

F( r) = -36r5 + 140r4 
- 196r3 + 105r2 

- 14. 

Vortex_blob takes as arguments x, the location where the velocity is to be evaluated, 
and omega, a one dimensional map containing the information describing the vortices. 
The map takes values of type vortex_record, a user-defined record type containing 
position, velocity and strength fields required to describe a single vortex. In writing 
vortex_blob, we have taken advantage of the fact that F{l} = -1 to compress the two 
cases in the definition of 1(6 into a single expression. We use the operator trace to 
perform the sum in (2). Finally, the procedure vorvel uses vortex_blob to evaluate the 
velocity field induced at the locations of all the vortices. We use partial closure and 
function application to make the body of this procedure a single expression. 

The principal difficulty with the algorithm described above is that the computa­
tional effort required to evaluate the velocities is O(N2), where N is the number of 
particles. Anderson [1] introduced a particle-particle, particle-mesh approximation to 
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external integer 
numvor.s; 

external real 
twopi, delta j 

let 
vortex_record = 

struct ([1 .. 2] real position, velocity; real strength], 
two Vector = [1 .. 2] real; 

external [1 .. numvors] vortex_record vortices; 

let vortex_blob = proc( two Vector Xj [] vortex_record omega) - > two Vector: 
begin 

let 

end; 

delx = x - posiiion@(omega), 

distance_fen = proc( two Vector x)- >real: 
sqrt( x [1] **2 + x [2] **2), 

distance = distance_fcn@( delx), 
perp = proc( two Vector x) - > two Vector: [-x [2] ,x [1] ] , 
maxrdel = maze?, delta)@( distance), 

F = proc(real rd) -> real: 
(-14 + rd**2*(105 - rd*(196 - rd*(140 - 36*rd»»; 

return trace ( 
F@(maxrdelldelta) * perp@(delz) * strength@(omega) 

I( twopi*maxrdel**2), 
1); 

let vorvel = proc: 
velocity@( vortices) := vortex_blob(?, vortices) @(po.sition@( vortices»; 

FIG. 3. FIDIL program for velocity field evaluation. 
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the O(N2) calculation, called the Method of Local Corrections (MLC). This algorithm 
is essentially linear in the number of particles, and does not introduce any additional 
loss of accuracy in the approximation to the underlying vorticity transport. 

In the MLC algorithm, one introduces a finite difference mesh that covers the 
region containing the particles. Without loss of generality, we assume a square finite 
difference mesh covering the unit square, with mesh spacing h == 11M for some integer 
M, and satisfying 6 < h. We also assume that the particle locations Xj are all 
contained in a slightly smaller square [Ch, 1 - Ch] x [Ch,l - Ch], where C ~ 1 is 
in principle problem-dependent. In practice, satisfactory results have been obtained 
with C == 2. \Ve also introduce the function B : R2 ~ Z2 defined by B(x) == k if 

The algori thm is given as follows. 

1). Compute R: [1, ... ~ M]2 ~ R2, a discrete approximation to ~u on the finite 
difference grid. If we denote by a fd the 9-point discretization of ~, then 

(Ri)k - Wi(~JdKi)k' if IB(Xi) - k\ :5 C 

- 0, otherwise 

R - 2.:Ri 

Here, (/(i)k == K,s(kh - Xi), the array of values of K 5(- - Xi) projected over the finite 
difference grid, and II - ml == max(ll} - mll, Ih - m2\), I, m E Z2. We are able to 
truncate Ri to be zero outside a finite radius because ~/( 6{- - Xi) == 0 outside the disc 
Ix - Xii < h < h; thus, sufficiently far from Xi, the truncation error in aId applied to 
1(6 is small, and is well-approximated by zero. 

2). Solve ~JduJd == R using a fast Poisson solver. The use of fast Poisson solvers 
on rectangular grids is standard, and we won't discuss it here. The only subtlety 
in the present case is that the boundary conditions required are "infinite domain" 
boundary conditions, i.e., a set of discrete boundary conditions corresponding to the 
infinite domain Green's function G * p == u, G{x) == - 2

1
7r 10g(lxl). However, tIns can 

be done by performing two fast Poisson solves with Dirichlet boundary conditions. 

9). Calculate the velocity field at the particle locations. For the collection of 
particles contained in a given cell, this is done in two steps. First, the velocity induced 
by particles in nearby cells is computed using the direct N -body formula (2). Then 
the effect of all more distant particle is interpolated from the finite difference grid, 
having first corrected the values from u ld to reflect the fact that the influence of the 
nearby particles has already been accounted for in the local N-body calculation. 

(3) U(x;) = E wjKs(x. - Xj) 
j:IB(xd-B(xj)I$C 

+I(xi; iill ... iiI") 
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It, ... ,I" - B(Xi), B(Xi) ± [0,1], B(x.) ± [1,0] 

iiI. - U~d 2: wi K6(1 lt h - Xj) 

j:\B(Xi)-B(xi)1 

Here, I( x; ii,l ... UI.) IS calculated using complex polynomial interpolation in the 
plane. 

lex) - (Re(I(z», -Im(I(z») 
4 

I(z) - 2:aqZq, z = (Xl + HX2) 
q=0 

with the coefficients chosen such that 

I{z,) - UI. - HVIJI 

Zit - (1; + Hl~)h 
In figure 4 we give a FIDIL implementation of Anderson's algorithm for evaluating 

the velocity field induced by a collection of vortices on themselves. The procedure 
MLC takes as input the arguments psi, which contains the vortex data structure, and 
h, the finite difference mesh spacing. Psi is a two-dimensional map whose values are 
one dimensional maps of varying sizes. The values of the one-dimensional maps are 
of type vortex_record. Thus psi represents the collection of vortices sorted into finite 
difference cells: the domain of psi is the finite difference grid, and a vortex at position 
Xi is represented by an entry in psi [k] only if Xi = k. ML C evaluates the velocity 
fields induced by the vortices in psi on themselves and stores them in velocity field of 
each vortex_record in psi. 

The first step of MLC is performed in (A)-(B). For each cell, the velocity field 
induced by the vortices in that cell is calculated for all the points in a domain large 
enough so that the nine-point Laplacian applied to the resulting map is defined on 
D_C. To define the finite difference Laplacian, we use the operator and shift calculus 
defined in figure 2 which has been included in the header file operator_calculus.h. Then 
A,fd is applied, and the result is used to increment RHS. The second step the call to 
PoissonSolve (C), which we take to be an externally defined procedure, to obtain u /d 

defined on the grid domainOf(psi). The third step is performed in (D)-(E). For each 
cell k, all of the vortices which will contribute to the sums in (3) for the vortices in 
psi [k] are gathered into a single map psi_corrections. Then the velocities of psi [k] 
are initialized ",ith sum of the local N-body velocities. Finally, u_fd_local, the map 
containing the values of ii are computed, and the interpolated velocities added to 
velocity@(psi [k]). 

4.2. Example 2: Finite Difference Methods. A large class of time-depen­
dent problems in mathematical physics can be described as solutions to equations of 
the form 



#include It operator _calculus.h n 

let 
Fd_ Values = [*2] two Vector; 

let 
toComplex= proc(real a,b) -> complex: a + b*li, 
iota = proc(domain[?nl D) -> [D] valtype(D): [i from D: i]; 

let PoissonSolve = proc(Fd_Values u) -> Fd_Values: 
external PoissonSolve; 

let 
C = 2, 
D_C= [-C .. C, -C .. C], 
rhs-stencil = accrete(D_C), 
interpolation...8tencil = Image ( [[0,0], [0,1], [1,0], [-1,0], [0,-1]]); 

let MLC = proc(ref [*2] flex [] vortex_record psi): 
begin 

let 
D = [i from domainOf(psi): length(psi (i]) /= 0]; 

[domainOf(psi)] two Vector RHS; 

RHS := [ domainOf(psi): [0.0, 0.0] ]; 

let Laplacian = proc (Fd_Values u) -> Fd_Values: 
(4.*(El(1) + E1(-I) + E2(1) + E2(-I» - 20.0*Id + 

/* (A) */ 

E1(1)#E2(1) + E1(1)#E2(-1) + E1(-1)#E2(1) + E1(-1)#E2(-1»)(u) 

for k from D do 
let 

u_rhs_local = vortex_blob(?, psi [k] )@(iota(rhs_stencil « k )*h); 

RHS := RHS + Laplacian( u_rhs_local)/(6.0*h**2) 

od; /* (B) */ 

let u_fd = PoissonSolve(RHS,h); /* (C) */ 
FIG. 4. FIDIL program for the /&{ethod of Local Corrections (Part 1 of 2). 
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for k from D do 
flex [*] vortex_record psi_correction3; 
psi_corrections :== NullMap(l,vortex_record}; 

for j from D_C do 
psLcorrections :== concat{psi_corrections, psi [k+j] ) 

od; 

velocity@(psi [k]) :== 

/* (D) */ 

velocity@(psi [k]) + vortex_blob(?, p3i_corrections)@(x@(psi [k]» j 

u_fd_local := 

od; 

u_!d < < -k on interpolation..3tencil 
- vortex_blob(?, p8i_corrections) @ 

(iota( interpolation_8tencil < < k )*h ); 
velocity@(psi [k]) := 

velocity@(psi [kJ ) 
+ interp(?, tt_fd_locaZ)@«p08ition@(psi[k]) - k*h)/h); 

end /* of MLC */; 

let interp == proc( two Vector x; Fd_ Values u_!d) - > two Vector: 
begin 

let 
a = toComplex@( u_!d [] [1] ,-u_!d [] [2]), 
z = to Complex ( x (1) ,x [2]), 

coe! = [ 
a [[0,0] J, 

/* (E) */ 

-(a[[I,O]] - a[[-I,O]] - 1i*(a[[0,-1]] - a[[0,1]]»*.25, 
(a[[-I,O]] + a[[l,O]] - a[[O,l]] - a[[0,-I]])*.25, 
-(a[[-I,O]] - a[[I,O]] + li*(a[[O,-I]] - a[[0,1]]»*.25, 
-(a[[O,O]] - a[[I,O]] - a([-I,O]] - a[[0,1]] - a[[0,-1]])*.25 

], 
pofz = coef[l] + z*(coe![2] + z*(coe![3] + z*(coe![4] + z*coef[5]»): 

return( [realPart(pofz), imagPart(pofz)]); 
end /* of Interp * /; 

FIG. 4. FIDIL progrom for the Method of Local Corrections (Part 2 of 2). 
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U == U(x,y, t) E RM,F, G == F(U), G(U) 

Such systems are known as conservation laws, since the equations are in the 
form of a divergence in space-time of (U, F, G). Hyperbolic refers to the fact that 
the underlying dynamics is given locally by the propagation of signals with finite 
propagation velocity; in particular, the initial value problem is well-posed. In general, 
F and C are nonlinear functions of U; for example, in the case of Euler's equations 
for the dynamics of an inviscid compressible fluid, if we denote the components of U 
by U == (p, m, n, E), then the :fluxes are given by 

m2 mn m 
F(U) = (m, - + p, -, -(E + p)}, 

p p p 

mn n 2 n 
C(U) == (n, -, - + p, -(E + p)), 

p p p 

where the thermodynamic pressure p is given by 

m 2 +n2 

p = (E - 2p2 )(y -1). 

A widely used technique for discretizing conservation laws is to use finite difference 
methods whose form mimics at a discrete level the conservation form of the differential 
equations. 

Here ~t is a temporal increment, ~x and ~y are spatial increments, and n , i , j, 
are the corresponding discrete temporal and spatial indices. The discrete evolution (4) 
has a geometric interpretation on the finite difference grid. We interpret Ui~j as the 
average of U over the finite difference cell ~t..j, 

~i.j == [(i - 1/2)~x, (i + 1/2)dx] x [(j -1/2)dy, (j + 1/2)~y] 

Utj ~ 1 f U(x, y, n~t)dxdy, 
, ~xLly JA .. ',J 

and the evolution of U can be thought of as given by a flux. balance around the edges 
of di,j . 

The first algorithm we consider is a variation on one of the first algorithms for 
conservation laws, the Lax-Wendroff algorithm. We use a two-step formulation of a 
type first introduced by Richtmyer [6]. Here, and in what follows, we take the spatial 
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grid to be square, i.e. ~x = ~y = h. The algorithm we will consider is given as 
follows. 

(5) Ui+ 1/ 2,j+l/2 - ~(U;7i + U;7j+l + UtI-I,; + U,+l,j+I) 

+ ~~ (F(U;7j) + F(U;7i+ 1 ) - F(Ui+1,j) - F(Ui+1,j+l») 

+ ~;(G(Ui:i) - G(Ui7i+l) + G(Ui+1,j) - G(U'+l,j+1») 

It is clear from the above description that, if we want to evolve the solution on 
a finite rectangular grid for one time step, it suffices to provide additional solution 
values on a border of cells one cell wide all around the grid. A fairly general way to 
implement such boundary conditions is to provide a procedure 4>(U, h) which returns 
U B, the values required on the border of cells surrounding the grid where U is defined. 

In figure 5 we give a FIDIL implementation of the Lax-Wendroff algorithm (4)) 
(5). Again, we use the operator and shift calculus from figure 2 to implement the 
algorithm. We have split the implementation into two pieces. LW -Flux takes as input 
a map containing the values of U on the extended grid required to computed the 
fluxes Fi,+1/2,j,G',j+l/2' It returns a map of type [1 .. 2] flex Values containing those 
fluxes. This map--valued map is a natural type for describing fluxes for conservation 
laws, since one needs a map of type Values with a different domain for the flux in each 
coordinate direction. The procedure L W calls phi to calculate the boundary values 
U JJ, calls L W -Flux with the first argument given by the direct sum of U and U JJ. 
Finally, U is updated in place using (4). 

In finite difference calculations of solutions to hyperbolic conservation laws, it is 
often the case that the accuracy of the computed solution for a given rectangular 
mesh spacing can vary substantially as a function of space and time. If one wants to 
maintain a uniform level of accuracy in a calculation, it is necessary to to vary the 
mesh spacing as a function of space and time, concentrating computational effort in 
regions where the error is largest. One approach is Adaptive1vIesh Refinement (A1vIR) 
[3,2], in which the finite difference mesh is locally refined in response to SODle locally 
computed measure of the error. This leads to an algorithm in which the solution 
is defined on a hierarchy of rectangular grids, with the time evolution computed 
by multiple applications of a rectangular grid integration scheme such as the Lax­
\Vendroff algorithm described above. In addition, the error is periodically measured, 
and the grid hierarchy modified as required. In the {ollo,ving, we describe in detail the 
structure of the solution on the grid hierarchy, and give a FIDIL implementation of 
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#include II operator _calculus.h II 
let 

nvar = 4, 
Vector = [1 .. nvar] real, 
Values = [*2] Vector, 
Fluxes = [1 .. 2] flex ValueJ, 
gamma = 1.4; 

let L W.-Flux = proc( Values U; real h, dt) - > Fluxes: 
begin 

let 
U_corner = O.25*(E1(1) + Id + E2(1) + E1(1)#E2(1»( U), 
F..:e = O.5*«E2(1) + Id)#(El(l) - Id»(F_fcn@( U», 
G_y = O.5*«E1(1) + Id)#(E2(1) - Id»( G_fcn@( U», 
U~alf= U_corner - dt*(F..:e + G_y)/(2.*h); 

return [O.5*(Id + E2(1))(F_fcn@( U~alf», 
O.5*(Id + E1(1»( G_fcn@( U~alf»]); 

end; 
let LW = proc(ref Values U; real h,dt): 

begin 
let 

D = boundary( domainOf( U», 
UJJ = phi( U, D, h), 
Flux = LWYlux(U (+) UJJ, h, dt); 

U:= U + dt*Div(Flux}/h; 
end; 

let F-fcn = proc( Vector U) -> Vector: 
begin 

let p = ( U [4] - (U [2] **2 + U [3] **2)/(2.* U [1]) )*(gamma - 1.); 
return( [U [2], U [2] **2/ U [1] + p, U [2] * U (3] / U [1], U [2] *( U [4] + p)/ U [1] ] ): 

end; 
let G_fcn = proc( Vector U) -> Vector: 

begin 
let p = ( U [4] - (U [2] **2 + U [3] **2)/(2.* U [1]) )*(gamma - 1.); 
return([U[3],U(2]*U(3]/U[l],U[2]**2/U(l] + p,U[2J*(U[4] + p)/U[l]]): 

end; 

FIG. 5. FIDIL program for the Laz- WendroiJ algorithm. 
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DI •l 

D2..1 

r---

D3•1 

i...---

D~.2 

FIG. 6. Grid hierarchy for three levels. 

the time evolution of that solution for the special case of the Lax-"'''endroff algorithm 
as the underlying integration scheme. 

AMR is based on using a sequence of nested, logically rectangular meshes on 
which the PDE is discretized. For simplicity, we will also require that all the meshes 
be physically rectangular, with equal mesh spacing in both coordinate directions. We 
say a mesh at level 1 is a grid Di,le with mesh spacing h, and define 

D, == UkDl,k. 

The mesh spacings on the various grids are related by h,j h
'
+1 == r where the refinement 

ratio r is restricted to be an even number. By identifying a grid with the domain it 
covers, we have Dl == UkDl,k == D, the problem domain. If there are several grids at 
levell, the grid lines must align with each other~ that is, each grid is a subset of a 
rectangular discretization of the whole space. We may often have overlapping grids 
at the same level, so that D1,i n Did' =I 0, but how the grids intersect should have no 
effect on the solution. We require that the discrete solution be independent of how 
D, is decomposed into rectangles. Grids at different levels in the grid hierarchy must 
be "properly nested." This means 

(i) a fine grid is anchored at the corner of a cell in the next coarser grid. 
(ii) There must be at least one level 1-1 cell in some level 1- 1 grid separating a 

grid cell at level 1 from a cell at level 1 - 2, unless the cell abuts the physical 
boundary of the domain. 

Note that this is not as strong a requirement as having a fine grid contained in only 
one coarser level grid. 

Grids will be refined in time as well as space, by the same mesh refinement ratio. 
Thus, 

t:..tl ~tl-l ~tl 
h; = h,- 1 

== ... == -,;; 

and so the same difference scheme is stable on all grids. This means more time steps 
are taken on the finer grids than on the coarser grids. This is needed for increased 
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accuracy in time .. In addition, the smaller time step of the fine grid is not imposed 
globally. Finally, UI,1e denotes the solution on D"k ; in addition, we can define U' to 
be the solution on D1, since the solution on overlapping grids at the same level are 
identical. 

The AMR algorithm for advancing the solution on the composite grid hierarchy 
described above can be formulated as being recursive in the level of refinement. On a 
given level of refinement 1, the algorithm can be broken up into three steps. 

Step 1.. Advance the solution on all the level I grids by one time step, using a 
conservative algorithm for doing so on a single rectangular grid. The only difficulty 
is in specifying the values along the outer border of Dl,l. For cells in that border con­
tained in other grids at the same level, we copy the values from those other grids. For 
cells exterior to the physical domain, we use an appropriate variation of the physical 
boundary condition operator 4>. For any remaining cells, we use values interpolated 
from the coarser levels. For the Lax-'Vendroff algorithm described above, we can use 
a particularly simple interpolation scheme consisting of piecewise constant interpola­
tion in space and linear interpolation in time using only the level 1 - 1 grids. This 
is possible due to the fact that Lax-Wendroff requires a border of boundary values 
that is only one cell thick, and because of the proper nesting requirement of the AMR 
grid hierarchy. After the solution is advanced, we use the numerical fluxes to initial­
ize or update certain auxiliary variables used to maintain conservation form at the 
boundaries between coarse and fine grids; these quantities will be described in detail 
in step 3. 

Step 2.. Advance the solution on all the level I + 1 grids by r time steps, so that 
the latest values of the 1 + 1 are known at the same time as the level I solutions 
obtained in step l. 

Step 3 .. Modify the solution values obtained in step 1 to be consistent with the 
level I + 1 fine grid solutions. This will be the case if 

(i) the grid point is underneath a finer level grid; 
(ii) the grid point abuts a fine grid boundary but is not itself covered by any fine 

grid. 
In case (i), the coarse grid value at level 1-1 is defined to be the conservative average 
of the fine grid values at level 1 that make up the coarse cell. After every coarse 
integration step, the coarse grid value is simply replaced by tins conservative average, 
and the value originally calculated using (4) is thrown out. For a refinement ratio of 
r, we define 

(6) 

where the indices refer to the example in Figure 7. 

In case (ii), the difference scheme ( 4) applied to the coarse cell must be modified. 
According to (4), the fine grid abutting the coarse cell has no effect. However, for 
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FIG. 7. The coarse cell value is replaced by the average of all the fine grid points in that cell. 

the difference scheme to be conservative on this grid hierarchy, the fluxes into the fine 
grid across a coarse cell boundary must equal the flux out of the coarse cell. We use 
this to redefine the coarse grid flux in case (ii). For example, in the figure below, the 
difference scheme at cell (i, j) should be 

U/,j(t + at,) -

(7) 

The double sum is due to the refinement in time: for a refinement ratio of T, there 
are r times as many steps taken on the fine grid as the coarse grid. If the cell to the 
north of (i, j) \vere also refined, the flux Gti+l/2 would be replaced by the sum of fine 
fluxes as well. 

This modification is implenlented as a correction pass applied after a grid has been 
integrated using scheme (4), and after the finer level grids have also been integrated~ 
so that the fine fluxes in (7) are known. The modification consists of subtracting the 
provisional coarse flux used in (4) froln the solution U f.j(t + atl), and adding in the 
fine fluxes to according to (7). To implement this modification, we save a variable bF 
of fluxes at coarse grid edges corresponding to the outer boundary of each fine grid. 
After each set of coarse grid fluxes has been calculated in step 1, we initialize any 
appropriate entries of 8F with 

(8) 

Since several coarse grids may overlap, it is possible that 8F may be initialized more 
than once. However, since the coarse fluxes on overlapping cell edges for the same 
level are identical, the initial value so obtained is independent of which particular 
coarse grid flux is assigned last. At the end of each fine grid time step, we add to 
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FIG. 8. The difference scheme is modified at a coarse cell abutting a fine grid. 

6Fi+1/2,j the sum of the fine grid fluxes along the (i + 1/2, j)th edge, 

(9) 

Finally, after r fine grid time steps have heen completed, we use 6Fi+1/2,j to correct 
the coarse grid solution so that the effective flux is that of (7). For example, for cell 
(i + 1, j), we make the correction 

(10) 
;ltt 

V, .- U
' 

+ cF. i+l,i'- *+1,i -;;;0 i+l/2,j' 

If the cell i + 2, j were refined, \ve would also make the correction 

and similarly for the vel,tical fluxes. At the end of a time step, we may have several 
fine grids available to update a given coarse cell edge, since overlapping grids are 
permitted, For this reason, one must keep track of the edges of a coarse cell that have 
already been updated, and only perform the update once for each edge. As before, 
it doesn't matter which fine grid actually performs the update for any given edge, so 
the result is independent of the order in which the fine grids are traversed. 

In figure 9, we give a FIDIL implementation of the integration step outlined 
above for AMR. The main procedure Step takes a single integer argument 1, the 
grid level being integrated. The principal variables are two copies U, U_new, of the 
composite map structure containing the entire set of solution values, with V I,k stored 
in U [l] [k]. The two sets of values U, U_new correspond to two different time levels, 
with times time [1], time [1] + delta_t [1] depending on the grid level I. 'Ve also define 
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BoundaryYlux, in which the correction fluxes SF, SG, are stored for the outer edges 
of all the grids. The refinement ratio s denoted by nre/ine. 

The first step of the A?v!R integration procedure is performed in (A)-(B). For each 
level 1 grid solution Ul,k, appropriate boundary conditions are calculated and stored 
in U_B, a map whose domain is Boundary(domainOf( U [l] [k]). In the first loop 
of this section, boundary values are interpolated from all possible 1 - 1 grids, using 
piecewise constant interpolation in space, and linear interpolation in time. Since the 
domain of U JJ is only one cell wide, proper nesting guarantees that all the values of 
U-B corresponding to points in the problem domain D will be set by this procedure. 
In the second loop, all of the values of U -B for which level 1 values are available are 
overwritten with them. Then the physical boundary condition procedure 4> is called 
to fill in any remaining cells which extend outside D. Having obtained appropriate 
boundary values for U l,k, we compute fluxes using L W Ylux and compute U _new using 
(4). Finally, we set Boundary-.Flux [1] and Boundary_Flux [1+1] using (8) and (9) 
along the outer edges of D"k' The procedure Project-.Flux, defined at the end of the 
figure, calculates the average of the fluxes in the right hand side of (9). 

The second step is performed at (C), with Step called recursively nrefine times 
with argument 1 + 1. 

The third step is in (D )-(E). In the first part of the loop over Grids, levell cells 
are incremented using the refluxing algorithm (10). The domains D-fix are used to 
keep track of which edges are being updated, so that no edge gets updated more than 
once. The final loop over Gridsp overwrites the levell values with the averages of the 
level 1 + 1 values using (6). 
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export Step; 

let 

let 

maxlev = 3, 
nrefine = 4, 
refine - [nrefine, nrefine] , 
Box == [0 .. nrefine - 1, 0 .. nrefine - 1]; 

Level.s == [1 .. maxlev]; 

let e_vector == 
proc (integer i, ndim) - > [1 .. ndim] integer: 

[j from [1 .. ndim] : if i = j then 1 else 0 fi ]; 

postfix operator "*; 
let 

"'. == 
proc(domain[?ndim] D) -> [1 .. ?ndiml domain[?ndim]: 

[i from [1 .. ndim] : D + D < < e_vector( i, ndim) ], 
del = 

proc(domain [?ndiml D) -> [1 .. ndiml domain [ndim] : 
[i from [1 .. ndim] : 

(D + D« e_vector(i,ndim) - (D - D« e_vector(i,ndim»]; 

external [Levels] flex [] flex Values U, U_new; 
external [Levels] flex [] Fluxes Boundary_Flux; 
external [Levels] real delta_t, h, time; 

FIG. 9. FIDIL program for Adaptive J.,fesh Refinement (Part 1 of 4). 
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let Step == proc (integer 1) : 
begin 

U [l] :== U_new [1] ; 
alpha == (time [l-l] - time [1])/ delta_t [1-1] 

let 
Grids == domainOf ( U [1] ), 

/* (A) */ 

Gridsp == if 1 < maxlev then domainOf( U [1+1]) else NoGrids fi, 
Gridsm == if 1 > 1 then domainOf( U [1-1]) else NoGrids fi; 

for k from Grids do 
[Boundary( domainOf (U [1] [k]»)] Vector U JJ; 

for km from Gridsm do 
for i from Box do 

contract( UJJ « i, refine) *:== 
alpha. U [1-1] [km] + (1. - alpha)* U_new [1-1] [km] 

od; 
od; 

for kb from Grids do U JJ *:== U [1] [kb] od; 

UJJ *:== phi( U,domainOf( U-..8),h [l]); 

let 
Flux == LW Jlux( U [1] [k] (+) U -..8, delta_i [1], h [1] ); 

U_new [1] [k] :== U [1] [k] + delta_t [1] *Div(Flux)/ h [1]; 
if I > 1 then 

Boundary1lux [1] [k] *:== Boundary_Flux [1] [k] + ProjectYlux (Flux): 
fi; 
for kp from Gridsp do 

od; 
od; 

BoundaryYlux (l+l] [kp] *:== Flux*nrefine**2 
on dele contract( U [l+l] [kp] J refine)) 

FIG. 9. FIDIL program for Adaptive Afesh Refinement (Part 2 of 4). 

31 



time [1] := time [1] + delta_t [1]; /* (B) */ 

if I < maxlev then 

for n from [1 " nrejine] do Step( l+ 1) od; / * (C) * / 

for kp from Gridsp do /* (D) */ 
Boundary..Flux [1+1J [kp] .-

delta_t [I] *Boundary-Flux [1+1] [kp] !(h*nrejine.*2) 
od; 

for k from Grids do 

[1 .. 2] domain[2] D-fix; 

D-fix := domainOf( U [1] [k]) "'*; 

for dir from [1 .. 2] do 

od; 

let E = e_vector( dir, 2); 

for kp from Gridsp do 
U_new [lJ [k] *:= 

U_new [1] [k] 

od; 

+ (Boundary_Flux [1+ 1] [kp] [dir] on D-fix [diT]); 
U_new [1] [k] « -E *:= 

U_new [1] [k] « -E 
- (Boundary-Flux [l+1] [kp] [dir] on D-fix [dir]); 

D-fix [dir] := 
D-fix [dir] -domainOf(Boundary_Flux [l+l] [kp] [dir]) 

FIG. 9. FIDIL program for Adaptive AJesh Refinement (Part 9 of 4). 
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for kp from Gridsp do 

U _new [1] [k] *:= [contract( U J'l,ew [1+ 1] [kp], refine}: 0.0]; 

fii 

od; 
od; 

for i from Box do 
U_new [1] [k] *:= 

U_new [1] [k] 

contract( U ..new [1+ 1] [kp] < < i, refine) 
od; 

end /* of Step */; 

let ProjectJi'lux = proc( Fluxes Flux) - > Fluxes: 
begin 

Fluxes OutFlux; 

domainOf@( OutFlux) := contract@(Flux, refine); 

for dir from [1 ., 2] do 

/* (E) */ 

OutFlux[dir] := [domainOf(OutFlux[dir]): [ [1 .. nvar]: 0.0] J; 
let E = e_vector(if dir = 1 then 2 else 1 ii, 2); 
for i from (0 .. nrefine - 1] do 

OutFlux [dir] .- OutFlux [dir] + contract( Flux [dir] < < (i*E), refine) ; 
od; 

od; 
return( OutFlux); 

end /* of ProjectJi'lux */; 

FIG. 9. FIDIL program for Adaptive Mesh Refinement (Part 4 of 4). 
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