
lJCRL- 98057
PREPRI~T

FIDIL: A LANGUAGE FOR SCIENTIFIC PROGRAMMING

Paul N. Hilfinger
University of California at Berkeley

Phillip Colella
Lawrence Livermore National Laboratory

This paper was prepared for submittal to
SIAM Frontiers in Applied Mathematics

January 1988

This is a preprint of a paper intended for pUblication in a journal or proceedings. Since
changes may be made before publication. this preprint is made auilable with the un­
derstanding that it will not be cited or reproduced without the permission of the author.

D1SCL\fl\]FR

rhi, documenl \\a, prepared as an acrollnC of \\or" spon"or~d b~' an ag~Jlr) of the
l nih'd Slales Gmt.'rnmer\!. :>.Jeilht'r Ih~ l:niled Stah,'s GO\crnmt'ni nor the t :niversi(~
of California nor an} oC thdr t'mplo}e('~. makes an~ "arranl). I'Xprt''i'i or implit'd, or
assumes any It'~al Habilit} or responsibility for Ihc ac{'uraQ. cump&t'lcnt''iS, or useful­

nes .. uf an) informal ion, apparatbs, pruducl, or pro~'css disdo'icd. IIf rt'pres(>nl~ that
it" U'iC \\I)uld not infrinlt' prh'arl'l) o\\lled rilhi ... Reference lil'rein til an) .. pcl'ifir

nlHunerdal prod uris. prot"tss, or ~t'r\'ire b}' trade Dlime. Iradl"mar~, manufacturer. or
ollwTl'Ii'ic. docs nol nl'l'l· aril~ clllI>;.ilute or impi) ils l'ndurSl'OIcnt. rcrommend,llti"n.
lIf flHorill~ hy Ih", I' nic{'d Slate~ Go\'Crmncnt or Ih€' l fnhchilY of Camornia, I he
,it,,,, and npillitUh HC authur ... I'''prl''isl'd herdn do nnl IIl'c ... ,,,:.!ril) S'llt~ or rl'Occt

tho,>!.' of th(' 1 :nitl·d Statt's Go\crnment or Ihe 1 'nhl'rsit~ of California. and ~hall no!
Ill' tI'l'd fnr ;ldH'rfisillfJ, or prndurt {'ndOr'it'nh'l1l pllrpo

FIDIL: A LANGUAGE FOR SCIENTIFIC PROGRAMMING

PAUL N. HILFINGER. AND PHILLIP COLELLAt

Abstract. FIDIL is a new programming language for scientific computation. In this paper, we give
a. brief overview of the language, largely consisting of several extended examples from computational
fluid dynamics.

1. Introduction. One fundamental goal of research in programming language
design is to provide a better fit between problems and programming notation. In
scientific computation, this quest is sometimes described as one of reducing the "se­
mantic distance" between abstract mathematical descriptions of numerical methods
and programs that implement them-in effect, of making abstract mathematical de­
scriptions into programs. In its most ideal form, such a goal is generations beyond
the current state of the art. However, there are intermediate points along the way to
which we might aspire. In this paper, we describe one of them.

Currently, most numerical scientific programming is done in FORTRAN. This
language has served its purpose well, but the basic operators, quantities, and defini­
tional facilities that it supports are rather limited. Under the "FORTRAN model"
of computation, programs consist of sequences of individual arithmetic operations
on numbers contained in named scalar variables or in individual elements of arrays.
FORTRAN provides a certain amount of abstraction in the form of subprograms, but
these are sufficiently clumsy to use and define that in practice their application is lim­
ited (at least when measured against the practice in other programming languages).
Despite these oft-cited limitations~ the scientific community has largely adapted itself
to FORTRAN, and has developed a large body of software in the form of libraries
and application code.

l\fodern advances in numerical algorithms-motivated both by new applications
and increased processing power-have led to increasingly complex programs, have
made the task of converting algorithms to programs increasingly difficult, and thus
have made it increasingly attractive to autolnate this conversion. One approach to
automation is to provide a programming language that makes it easier to write about
more complex, "bigger" entities: about operators on arrays rather than on individual
array elements, about index sets with more general shapes than rectangles, and so
forth. \Ve have taken just this approach with the FIDIL (FInite DIfference) language,
\vhich we will describe in this article.

It is very difficult to evaluate a programming language, especially in the very early
stages of its deployment. In order to give the reader some basis for judgment, we will
present (in section 4) several realistic examples of FIDIL's use that are somewhat

• Department of Eledrical Engineering and Computer Sciences, University of California at Berkeley.
Research partially supported by the National Science Foundation under grant DCR-8451213.

t Lawrence Livermore National Laboratory. Research supported by U.s. Department of Energy,
Office of Energy Research Applied Mathematical Sciences Program at the Lawrence Livermore National
Laboratory under contract W-7405-Eng-48.

1

longer than is traditional for an overview paper about a programming language. We
will start with a brief overview of FIDIL, first with a description of features common
to most progralDJlling languages (section 2), and then with a description of features
specifically intended for scientific computation (section 3).

The FIDIL system is still under development. Our experimental compiler is a
Common Lisp program that runs on workstations and translates FIDIL into FOR­
TRAN programs for a Cray X-MP. The use of FORTRAN as an intermediate language
makes it relatively easy to use existing FORTRAN libraries, and may ease the task
of porting the compiler to other machines.

2. Overview of general-purpose facilities. FIDIL, like any programming
language built with a specific problem area in mind, comprises not only features
specific to that area, but also a more general framework such as one might find in any
language. \Ve will begin by describing this framework.

2.1. General Program Structure. A FIDIL program consists of a sequence
of declarations of constants and variables. Variable declarations use the "type list-of­
variable-names" format of FORTRAN and the ALGOL family, as in

integer x, y;
Constant declarations all have the form "let 81 = db 82 = d2 , • •• ," which evaluates
the di in order and defines the symbols 8i to have those values. As illustrated in the
following example, constants can be ordinary scalar values, arrays (called maps In
FIDILj see section 3), functions, or types.

let
n = 3, /* Scalar con!Jtant */
V = [0, 0, 0, 1], /* Array constant * /
rad = proc (real deg) -> real: 0.017453293 * deg,

/ * A function * /
Point = struct [real x, y];

/* A type */
Declarations may also be nested inside function definitions, in which case, as is usual
for languages in the ALGOL family, they apply only within that function and are
computed once for each call of the function. To accommodate separate compilation,
variables and certain constants can be imported--defined externally--or exported for
import by other programs. In the case of variables, this capability corresponds to
COlvUvION blocks in FORTRAN. The effect of an executable FIDIL program as a
whole is defined as a call to a function with the distinguished name main.

Constant declarations and assignment-free expressions play an important role in
FIDIL; the language has a distinct bias toward their use in places ,vhere programmers
in FORTRAN, ALGOL, C, or Pascal might use sequences of assignments. It is not
that such traditional programming is any more difficult in FIDIL than in FORTRAN,
for example, but rather that it is less necessary. The bias takes the form of primitive
operations for building arbitrarily complex objects in single expressions. As we shall
illustrate in sections 3 and 4, the end result of this bias is that the execution of a

2

FIDIL program tends to consist of a sequence of assignment statements in which the
computation of the value to be assigned is very large; that is, there is a great deal
of computation between assignment statements. There are two reasons this effect is
desirable. First, at an abstract level, the scientific programmer deals with "large"
operations on large objects: decompositions of matrices, applications of difference
operators to all values on a grid. It is only an artifact of conventional programming
languages-inherited from underlying machine architectures-that such operations
ultimately must be written as individual operations on scalar variables. Second,
from the concrete level of the compiler, the analysis and transformation necessary to
take advantage of pipelined or parallel machine architectures is generally easier when
assignment statements are minimized.

FIDIL requires that all named entities be declared and that each declared entity
have a single type, which may be indicated explicitly, as for variable declarations,
or inherited from the entity's definition, as for constants. These types include the
usual scalar types-integers, reals, complex numbers, booleans, and characters,~
domain and map types (which encompass arrays), functional types, and record types.
Since scalar types in FIDIL do not differ significantly from their realization in other
languages, we shall say no more about them, and concentrate instead on domain and
map types in section 3, functions and functional types in section 2.3, and record types
in section 2.2.

2.2. Record Types. A record value (or variable), also called a record, is a
collection of named values (or variables), called fields. Record types describe a class
of records by giving the number, names, and types of the fields of all records in this
class.

let
State struct [real x, y, px, py, m] ;

State S;
The declarations above define State to be a record type whose values have four real
fields, and then define S to be a State variable. S may be assigned to or passed as
a parameter to subprograms, just as for objects of scalar types. The individual fields
of S are accessible using field selectors, whicll are notated with a functional syntax as
in the following example.

x(S) := px(S) j m * dt + x(S);
In keeping with previous comments about the infrequency of assignment, a FIDIL
programmer might write the following instead.

S := State [px(S)jm * dt, py(S)/m *dt, px(S) + jx*dt, py(S) + fy*dt, m(S)J;
The right-hand side of this latter assignment statement illustrates the use of a record
constructor to create an entire record at once.

2.3. Defining functions and operators. Earlier, we saw a definition of a sim­
ple function for converting degrees to radians.

3

let
rad = proc (real deg) -> real: 0.017453293 * deg;

The syntax here is suggestive: it has the same form as the definition of a named
constant, suggesting that the phrase to the right of the equals sign denotes a value
in its own right. This is indeed the case; the expression defining the function Tad is
a subprogram literal. It has no name in isolation, but simply denotes "a function
taking a single real parameter, call it deg, and returning the real value computed by
the formula 0.017453293 * deg." The most common use for subprogram literals is in
the context shown-as definitions of function names-but they are sometimes useful
as anonymous function arguments to other subprograms and, as we shall see later, in
defining functionals.

One prominent characteristic of mathematical notation is our tendency to reuse
the same notation for multiple purposes. Programming languages present more op­
portunities for such reuse, since they tend to introduce mathematically artificial
distinctions-as between "short real" numbers and "long rear' numbers. FIDIL al­
lows the overloading of notation so that a conventional or suggestive name may be
used wherever it is appropriate. Hence, the definition of rad above may be extended
to cover long real numbers as well.

extend
rad proc (long real deg) - > long real: 0.0174532935199433 * deg;

The compiler detennines the particular definition of Tad to use by the context of its
use.

Another characteristic of mathematical notation, as constrasted with many pro­
gramming languages, is that function calls are notated not just with alphanumeric
names, but also with other operators having a more varied syntax. To accomodate
this, FIDIL allows the definition and overloading of infix (binary), prefix, and postfix
operators as functions or procedures. We might, for example, extend addition to work
on State variables, as defined above.

extend
+ = proc (State pl,p2) -> State:

begin
let

mc = m(p1)+m(p2);
return State [(x(pl)*m(p1)+x(p2)*m(p2»/mc,

(y(pl)*m(p1)+y(p2)*m(p2»/ mc,
px(p1)+px(p2), py(pl)+py(p2), m(pl)+m(p2)];

end;
Besides showing the extension of '+' to States, this example illustrates a few minor
points of syntax: the use of begin and end to provide a way of grouping several
declarations and statements into a single statement or expression, and the use of the
exit construct return to indicate the value of a function.

4

One common form of function definition defines one function as a specialization
of another with certain parameter values fixed. For example, the following two dec­
larqtions are identical. The second uses a partial fUDction closure to abbreviate the
defini tion.

let
/ = proc (State p) - > Force: attraction(pO, p);

let
/ = attraction(pO, ?);

Here, we assume that the function attraction is previously defined to compute the
contribution to the force (gravitational or whatever) on its second argument due to
its first. The notation attraction(pO,?) denotes a function of one argument that uses
attraction to compute its result, using pO as the first argument.

2.4. Functionals. FIDIL has been designed to accomodate "functional" pro­
gramming, in which the principal operations employed are the applications of pure
(side-effect-free or global assignment-free) functions to structured data. As we shall
see, this particular programming method makes heavy use of functions on functions.

Of course, most conventional programming languages, including FORTRAN. pro­
vide the ability to pass functions as arguments to other subprograms. FIDIL goes
further and allows functions to be returned as well, and in general to be calculated
with the aid of appropriate operators. As an example, consider the extension of the
(by now much-abused) operator '+' to functions; the sum of two unary functions is
a new unary function that produces the sum of these functions' values. It can be
defined as follows.

let
Unary Function = proc (real x) - > real;

extend

+=
proc (UnaryFunction fl, /2) - > UnaryFunction: /* (1) * /

proc (real y) -> real: fl(y) + f2(y); /* (2) */
The fragnlent above first defines UnaryFunction as a mnemonic synonym for

proc (real x) - > real
which is, in isolation, a type describing values that are "procedures taking a single
real arguments and returning a real result." Next, the subprogram literal giving the
value of '+' indicates that '+' is a binary operator on unary functions /1 and f2-line
(I)-and that its value is the subprogram that takes a real argument, x, and returns
the sum of /1 and /2 at y-line (2).

" 2.5. Generic subprograms. As it stands, the definition of '+' in section 2.4
works only for functions on real values. A definition of precisely the same form makes
perfect sense for functions of any numeric type, however. FIDIL provides a notation
whereby a single generic subprogram declaration can serve essentially as the template

5

for an entire family of specific subprogram declarations. Thus, we can generalize the
addition of functions as follows.

extend
+ = proc (proc (?T x) ->?T /1, /2) -> proc (?T x) -> ?T:

proc (T y) -> T: /l(y) + /2(y};
Here, the notation '?T indicates a pattern variable for which any type may be substi­
tuted. This definition of'+' applies to any pair of (unary) functions on the same type,
T, producing another function on T. The resulting function uses whatever definition
of '+' is appropriate for values of type T. The actual rules here are somewhat tricky,
since it is possible in principle to have the definition of '+' on T differ from place
to place in a program. For the purposes of this paper, we shall simply assume that
this situation does not occur and not go into the specific rules governing the selection
of '+', on the general assumption that an unhealthy preoccupation with pathologies
makes for poor language design.

2.6. Standard control constructs. FIDIL's constructs for conditional and it­
erative execution differ only in syntax from those of other languages. Figure 1 illus­
trates both in two fragments showing a sequential and then a binary search. In each
case, the search routine accepts a one-dimensional array with a least index of 0 and
a value to search for in the array, returning either the index of the value in the array,
or -1 if the value does not appear.

The if-elif-else .. {i construct, taken directly from Algol 68, allows the programmer
to indicate a sequence of conditions and the desired computations to be performed
under each of those conditions. It may be used either as a statement, to indicate
which of several imperative actions to take, or as an expression, to indicate which of
several possible expressions to compute. As we shall see in section 3.2, the conditional
construct also extends to conditions that produce arrays of logical values, rather than
single logical values.

The do-od construct indicates an infinite loop, which can be exited by an explicit
exit or return statement (the latter causing exit from the enclosing subprogram as
well.) A preceding for clause specifies an index set for the iterations. The fragment
above illustrates a simple iteration by 1 through a range of integers. 110re general iter­
ations are also possible. For example, one can iterate two variables over a rectangular
set of integer pairs using the following construct.

for (i) j) from [1..N, l..M] do ... od;
Here, the pairs are enumerated in row nlajor order (j varies most rapidly). One can
specify strides other than one, as in the follolving.

for i from [1. .N] by 2 do ... odj

3. Domains and Maps. Two classes of data type, domains and maps, playa
central role in FIDIL, because of their natural applications in algorithms that involve
discretizing differential equations. Together, they constitute an extension of the array
types universally found in other programming languages. An array in a language such
as FORTRAN can be thought of as a nlapping from some subset of Z n (the set of

6

let
searchl =

proc (Vector A; integer x) - > integer:
for i from [0 .. upb(A)] do

if z = A [i] then return i;
elif z > A [i] then return -1;
ii;

od,
search2 =

proc (Vector A; integer x) - > integer:
begin

in teger i, j;
i := 0; j:= upb(A);
do

if i >= j
then exit;

else
let m = (i+j) div 2;
if A[m] >= x then j:= m;
else i := m+l;
ii;

fl.;
od;
return

end;

if j < i then -1
elif A [i] = z then i
else -1
fl.;

FIG. 1. Two searches: searchl is linear and search2 is binary.

7

n-tuples of integers) to some codomain of values. Unlike mappings that are defined as
subroutines, arrays can be modified at individual points in the index set. The index
set of a conventional array is finite, rectangular, and constant throughout the lifetime
of the array. One typically denotes operations on arrays with dimension-by.dimension
loops over the index set, indicating an action to be performed for each data value in
the array as an explicit function of the index of that value.

Maps are the FIDIL data objects corresponding to arrays. Unlike conventional
arrays, however, their index set need not be rectangular or fixed, and the primitive
operations provided by FIDIL encourage the programmer to describe operations upon
them with single expressions that deal with all their values at once, generally without
explicit reference to indices. To accomplish this, the concept of array is split into that
of a domain, which corresponds to an index set and contains tuples of integers, and
of a map, which consists of a domain and a set of values, one for each element of the
domain.

3.1. Domains and maps with fixed domain. \Ve use the notation domain[n]
to denote the type of an n-dimensional index set. A variable declared

domain [2] D;
can contain arbitrary sets of pairs of integers. A particular rectangular domain may
be generated using a domain constructor, as in the following example, which sets D
to the index set of an N by M FORTRAN array.

D := [1 .. N, 1 .. M];
Several standard set operations apply to domains; the operators' +', '-', and ,*, denote
union, set difference, and intersection, respectively. In addition, there are several
operations, summarized in Table 1, that are appropriate for index sets.

For a domain D, the notation
[D] T X;

declares a variable X that is a map with index set D and element values of type T.
The type T (the codomain) may be any type; it is not restricted to scalar types. As a
shorthand, a simple rectangular domain constructor may also be used to denote the
domain, as in the following.

[1 .. 10, 1 .. M] T Y;
In both these cases, the domain is evaluated at the time the variable is declared and
remains fixed throughout the variable~s lifethne.

The precise domains of formal paralneters to procedures need not be specified,
but may be supplied by the actual parameters at the time of call, as in FORTRAN.
For example, the following header is appropriate for a function that solves a system
of linear equations Ax = b.

let
solve = proc ([*2] real A; [] real b; ref [] real z) : ...

The notation' [*2]' indicates that the index sets of A is a two-dimensional domain
whose contents is given by the arguments at the time of call. The notation' []' is
short for' [*1].' The dimensionality of the domain may be supplied by the call as

8

well. For example, the follo'wing header is appropriate for a function that finds the
largest element in an array.

let
largest = proc ([*?n] real A) -> real: ...

Again, in all of these cases, the index set of the formal parameters so defined is taken
to be fixed over the call.

3.2. Operations on maps. FIDIL provides for ordinary access to individual
elements of a map. If d is an element of the domain of a map A, then A Ed] is the
element of A at index position d. However, FIDIL encourages the programmer to
avoid the use of this construct and to try to deal with entire arrays at once. There
is an extensive set of pre-defined standard functions and constructs for forming map­
valued expressions. This in turn makes it easier for the compiler to make use of
implementation techniques, such as vectorization or parallel processing, that process
the entire array efficiently.

As for arrays in most modem languages, entire FIDIL maps may be assigned in
a single operation, as in

A := map·valued expression;
Likewise, constant map values may be defined in one declaration:

let C == map-valued expression;
Finally, there are various ways to assign to only a portion of a map. The statement

A *:== E;
for a map-valued expression E, assigns to only those elements A [p] for which p is an
element of both the domains of A and E.

The map constructor allows specification of the elements and index set of an entire
map in one expression. The statement

V:== [E1, E 2, •••]

assigns to Va one-rumensional map such that V[i] == E i . One may also use a rule to
specify the elements of a map~ as in the following.

V:== [i from domainOf(V): I(i)] j
This assigns to Va map whose element with index i is I(i). The function domainOf
yields the domain of its argument (a map). In the case of a constant map, the "i from"
phrase is superfluous and may he onritted, as in

[domainOf(V): 0.0];
which yields a map that is identically 0 on the domain of V.

A programmer can specify maps as restrictions of other maps or as unions of a
set of maps having disjoint domains. The following definitions first use the restriction
operator, on, to cause inner to be a copy of the portion of A whose indices are
between 1 and 99 and rim to contain the values of B for the other indices of A.
Finally, they define C to have the same interior as A and border as B, using the map
union operator, '(+).'

let
A = [p from [0 .. 100, 0 .. 100] : g(p)],
B == [p from domainOf(A) : h(p)])

9

inner == A on [1. .99, 1..99],
rim == Bon (domainOf(A) - domainOf(inside»,
C==A(+)B;

One of the most important operations in FIDIL is the "apply all't functional,
denoted by the postfix operator' @'. Suppose that 9 is defined as follows.

let
9 == proc (real x,y) -> real: ... j

Then the expression' g@' denotes a function on maps whose codomain is real that
yields a map whose codomain is real. Formally, for maps (or map-valued expressions)
A and B, we have the following.

g@(A,B) = [i from domainOf(A) • domainOf(B) : g(A [i], B [i])]
That is, g@(A,B) yields a map whose domain is the intersection of the domains of the
maps A and B and whose value at each point in that intersection is found by applying
the pointwise operator 9 to the values of A and B at that point.

For notational convenience, the standard arithmetic operators, comparison op­
erators, and certain others are already overloaded to operate on maps, so that, for
example, A+B, denotes a map whose elements are the sums of corresponding elements
of A and B. These operators are also overloaded to take a scalar as one operand and a
map as the other, with the usual meanings. Thus, 2.0 • A is the result of multiplying
each element of A by 2.0.

The conditional expression also extends automatically to take logical-valued
maps as its conditional test. For example, the following statement defines A [i] to be
taken from B at all indices where B [i] is non-negative, and otherwise from C.

let A == if B >== 0 then B else C ti;
The expression B >== 0 evaluates to a map from the domain of B to logical values.
For those indices at which B ~ 0, A is defined to agree with B. For those indices
at which C is defined and B < 0, A and C agree. Another way of expressing tIllS
is to use the standard function toDomain, which converts a logical-valued map to a
domain containing exactly those indices at which the map has a true value:

let A == (B on toDomain(B >== 0» (+) (C on toDomain(B < 0))
Many map operations of interest in finite-difference methods are functions of

neighbors of a map element, and not just the element itself.' To accommodate such
operations, FIDIL extends the shift operations on domains (Table 1) to maps in the
obvious way (see Tables 2 and 3). Thus, after the definition

let C == A« [1,1];
the map C has the property that C [[2,2]] is equal to A [[1,1]], and in general, that

C[p] ==A[p- [1,1]]
This last equivalence also illustrates the extension of arithmetic operators to maps:
elements of a t\vo-dimensiol1al dODlain are pairs of integers, represented as one-dimen­
sional maps of two integers such as p. The subtraction p - [1,1], is therefore the
result of subtracting 1 from each element of p.

The apply-all and shift operators allow the succinct description of difference op­
erators. For example, consider a map defined to sample the values of a function fat

10

Expression

valtype(D)

pin D

lwb(D), upb(D)

Meaning

For a domain D: shorthand for the type of the elements
contained in D. If D is a domain [n] for n > 1, then
valtype(D) is [l..n] integer. For n = 1, valtype(D)
is integer.

Union of Dl and D 2 •

Intersection of Dl and D 2•

Set difference of Dl and D 2 •

A logical expression that is true iff p (of type val­
type(D» is a member of D.

For D a domain[n]: A value of type valtype(D)
whose kth component is the minimum (lwb) or maximum
(upb) value of of the kth components of the elements of
D.

ahift(D, S), D« S Where S is of type valtype(D) (or integer ifn = 1)
and n is the arity of D: The domain {d + Sid in D}.

shifteD) Same as shifteD, -lwb(D».

contract(D, S)

expandeD, S)
accrete(D)

boundary(D)

The domain {d div Sid in D}.

The domain {d*Sld in D}.

The set of points that are within a distance 1 in all
coordinates from some point of D.

accrete(D) - D.
TABLE 1

Some standard operations on domains.

N + 1 discrete points between 0 and 1.
let fhat = [i from [0 .. N] : f(i * (l.OIN» J;

Then a discrete approximation to the first derivative of f over this range is given by
the following definition.

let df = (fhat - <fhat < < [1])) * N;
'Vorking this out by hand will reveal that

df [1] = (df [1] -df [0])*N, df [2] = (df [2] -df [1])*N, ...
Because the domain of fhat does not contain N + 1 and that of fhat < < [1] does not
contain 0, the domain of df is [1. .N].

3.3. Maps with flexible domains. Map variables need not have fixed domains.
The following declaration indicates that the domain of front, a two-dimensional array
of States, can vary over time.

flex [*2] State front;

11

Expression

NullMap(n, type)

domainOf(X)

toDomain(X)

image(X)

upb(X), lwb(X)

X#Y

shift(X,S), X «S
shift(X)

contract(X, S)

expand(X,S)

XonD

x (+) Y

Meaning

The null n-dimensional map with codomain type.

The domain of map X. May also be assigned to.

{ p from domainOf(X) : X [p] }, where X is a logical
map.

where X is a map whose codomain is of type [*n] in­
teger: the domain {dIX(P] = d for some pl.

upb(domainOf(X», lwb(domainOf(X»

For X and Y maps such that Y~s codomain is val­
type(domainOf(X»: a map object-assignable if X
is assignable-such that

(X#Y)[p] = X[Y[p]].
This is the composition of X and Y; its domain is

{p E domainOf(Y) I Y(pJ E domainOf(X)} .
where S is a [1..n] integer (an integer for n = 1), with
default value .lwb(X), and n is the arity of X: the map

X # [p from domainOf(X): p-S].
The operator shift, as well as contract and expand below,
yields an object that is assignable if X is assignable.

X # [p from contract(domainOf(X), S): S*p].

X # [p from expand(domainOf(X), S): piS].

The map X restricted to domain D. Also assignable if
X is.
where domainOf(X) n domainOf(Y) = {}: the union
of the graphs of X and Y, whose codomains must be
identical and whose domains must be of identical arity.

TABLE 2
Some standard operations on maps, part 1.

12

Expression

F@

trace(A,S)

Meaning

Concatenation of the E i • There must be a type T such
that each Ei is either a 1-dimensional map with a con­
tiguous domain and codomain T, or a value of type T
(which is treated treated as a one-element map with
lower bound 0). The result has the same lower bound
as El and a length equal to the sum of the lengths of
the E i .

Assuming that F takes arguments of type Ti and returns
a result of type T: the (generic) function extending F
to arguments of type [Di] T, and return type D, where
the Di are domains of the same arity and D is the inter­
section of the Di. The result of applying this function is
the result of applying F pointwise to the elements cor­
responding to the intersection of the argument domains.

for F as above returning type Tl : The extension of F
to arguments of types [DiJT as above, returning a value
of type [DJ]Tl defined by

F<@>(Xl, ... ,Xn)
== F@(xI, ... ,xn) (+) (Xl on (Dt - D».

where S is an integer i l or S == [it, ... , ir J, A is a map
with a rectangular domain of ari ty n, 0 < r < n, and
1 ~ it < ... < ir $; n: The map B of arity n - r defined
as follows.

B(jb' .. ,iil-I, i'l +b ... ,inJ =
~ UpbCA,id A[' . k' . J
L...k= lwb(A ,it} Jt, ... ,)il-I, ,Ji1 +b ... ,In .

That is, indices i i are replaced by an index variable k
and summed, for each value of the other indices. To be
well defined, the bounds of all the dimensions i m of A
must be identical. If n - r = 0, the result is a scalar.

TABLE 3
Some standard operators on maps, part 2.

13

let
Unary = proc(?T x) -> ?T;

extend

let

let

= proc(Unary 11,12) -> Unary: /* 11 composed with 12 */
proc(T x) -> T: Il(f2(x»,

+ = proc(Unary 11,12) - > Unary:
proc(T x) -> T: Il(x) + f2(x),

* = proc(Unary 11,/2) -> Unary:
proc(T x) -> T: Il(x) .. 12(x),

* = proc(Unary I; ? T a) - > Unary: /* Scalar multiplication .. /
proc(T x) -> T: f(x) .. a,

* = proc(? T a; Unary I) - > Unary:
proc(T x) -> T: a .. I(x),

Id = proc(?T I) -> ?T: I; /* Identity */

/* Shift operators: for map A, (El(k»(A) = A « [k,O] */
E1 = proc(integer k) - > Unary: 8hift(? ,[k,O]),
E2 = proc(integer k) - > Unary: 8hift(? ,[O,k]);

Div = proc ([1..2] [*2] ? T x) - > [*2] ? T:
(Id - El(l»(x[l]) + (Id - E2(1»(x[2]);

FIG. 2. A simple operator calculus.

One can set the domain of such a map directly, as in the following assignment.
domainOf (front) := ... ;

Alternatively, one can assign a map value with an arbitrary two-dimensional domain
to front as a whole:

fro nt : = [i from D : h (i)];
An important use of flexible array types is in specifying "ragged" arrays. For

example, consider the type BinGrid defined as follows.
let

Bin = flex [] State;
BinGrid = [D] Bin;

Each Bin has a one-dimensional domain that is independent of that of any other Bin
in a BinGrid. As its name might suggest, such a data type might describe the state
of a system of particles distributed by spatial position into a set of bins.

3.4. An illustrative operator calculus. Figure 2 displays a set of definition
that we will use later. These extensions of ari thmetic and other opera.tors allow the
succinct description of new difference operators.

14

4. Examples. In this section, we will describe the implementation in FIDIL of
two sets of algorithms from numerical PDE's: particle methods for the vorticity formu­
lation of Euler's equations, and finite difference methods for hyperbolic conservation
laws. For each case, we will present a simple algorithm, and then use that simple
algorithm as a building block for a more complex, but efficient algorithm for solving
the problem. We will restrict our attention to problems in two space dimensions,
since that is the case for which there are FORTRAN implementations for all of these
algori thms.

4 .. 1. Example 1: Vortex methods. Euler's equations for the dynamics of an
inviscid incompressible fluid in two space dimensions can be written in terms of trans­
port of a scalar vorticity w as follows.

oW -+U· VW = 0
8t

w = w(x,t) E R,x E R2

u = K *w = f K(x - x')w(x'}dx'

The evolution of the vorticity w is given by advection by a velocity field u that
is a non-local function of w: u = K * w = V x (d -lW). The velocity u satisfies
the incompressibility condition V . u = 0, so that the total vorticity in the system is
conserved. If we consider Lagrangian trajectories xC t) satisfying

(1)
dx
dt = u(x(t}, t),

then the vorticity along those trajectories remains unchanged:

dw ow dx ow
Tt(x(t), t) = at + dt' Vw = at + u, \7w = 0,

i.e., w(x(t), t) = w(x(O), 0).
Vortex methods use a particle representation of the vorticity as its fundamental

discretization (see Chorin [4]).

w(x, t) ~ ~WjJ..;(lx - xit)!), /6{x) = ;21 (';1) .
15

The {unction 16 is a smoothed approximation to a delta function, with

211" l f(r)rdr = 1, f(r) = 0 for r > 1.

The discretized dynamics are intended to mimic the Lagrangian dynamics of the
vorticity given by (1). In semidiscrete form, they are given by the following.

dXi
U(Xi)

dt -

(2) U(Xi) - 2: K6(xj - Xj)Wj
j

Ks(x) - K * 16(x).

Since 16 is a function of Ixl only, explicit fonnulas can be given for K 6, for example,
when f is a polynomial. In any case, 1<6 = 1< if Ixi > ~.

Given the formula (2) for the velocity field evaluated at all the particle locations,
straightforward application of some explicit ODE integration technique, which would
call a procedure to evaluation u, will yield a discretization in time. In figure 3, we give
a FIDIL program for evaluating the right-hand side of the ODE (2). The program
is divided into two procedures. The first procedure vortex_blob evaluates the velocity
field at an arbitrary point, x E R 2: u(x) = 'Ej I<6(x - Xj)Wj. The cutoff function ffJ
used here is due to Rald [5], and leads to a K s given by

I<s(x)

where

F(r) = -36r5 + 140r4
- 196r3 + 105r2

- 14.

Vortex_blob takes as arguments x, the location where the velocity is to be evaluated,
and omega, a one dimensional map containing the information describing the vortices.
The map takes values of type vortex_record, a user-defined record type containing
position, velocity and strength fields required to describe a single vortex. In writing
vortex_blob, we have taken advantage of the fact that F{l} = -1 to compress the two
cases in the definition of 1(6 into a single expression. We use the operator trace to
perform the sum in (2). Finally, the procedure vorvel uses vortex_blob to evaluate the
velocity field induced at the locations of all the vortices. We use partial closure and
function application to make the body of this procedure a single expression.

The principal difficulty with the algorithm described above is that the computa­
tional effort required to evaluate the velocities is O(N2), where N is the number of
particles. Anderson [1] introduced a particle-particle, particle-mesh approximation to

16

external integer
numvor.s;

external real
twopi, delta j

let
vortex_record =

struct ([1 .. 2] real position, velocity; real strength],
two Vector = [1 .. 2] real;

external [1 .. numvors] vortex_record vortices;

let vortex_blob = proc(two Vector Xj [] vortex_record omega) - > two Vector:
begin

let

end;

delx = x - posiiion@(omega),

distance_fen = proc(two Vector x)- >real:
sqrt(x [1] **2 + x [2] **2),

distance = distance_fcn@(delx),
perp = proc(two Vector x) - > two Vector: [-x [2] ,x [1]] ,
maxrdel = maze?, delta)@(distance),

F = proc(real rd) -> real:
(-14 + rd**2*(105 - rd*(196 - rd*(140 - 36*rd»»;

return trace (
F@(maxrdelldelta) * perp@(delz) * strength@(omega)

I(twopi*maxrdel**2),
1);

let vorvel = proc:
velocity@(vortices) := vortex_blob(?, vortices) @(po.sition@(vortices»;

FIG. 3. FIDIL program for velocity field evaluation.

17

the O(N2) calculation, called the Method of Local Corrections (MLC). This algorithm
is essentially linear in the number of particles, and does not introduce any additional
loss of accuracy in the approximation to the underlying vorticity transport.

In the MLC algorithm, one introduces a finite difference mesh that covers the
region containing the particles. Without loss of generality, we assume a square finite
difference mesh covering the unit square, with mesh spacing h == 11M for some integer
M, and satisfying 6 < h. We also assume that the particle locations Xj are all
contained in a slightly smaller square [Ch, 1 - Ch] x [Ch,l - Ch], where C ~ 1 is
in principle problem-dependent. In practice, satisfactory results have been obtained
with C == 2. \Ve also introduce the function B : R2 ~ Z2 defined by B(x) == k if

The algori thm is given as follows.

1). Compute R: [1, ... ~ M]2 ~ R2, a discrete approximation to ~u on the finite
difference grid. If we denote by a fd the 9-point discretization of ~, then

(Ri)k - Wi(~JdKi)k' if IB(Xi) - k\ :5 C

- 0, otherwise

R - 2.:Ri

Here, (/(i)k == K,s(kh - Xi), the array of values of K 5(- - Xi) projected over the finite
difference grid, and II - ml == max(ll} - mll, Ih - m2\), I, m E Z2. We are able to
truncate Ri to be zero outside a finite radius because ~/(6{- - Xi) == 0 outside the disc
Ix - Xii < h < h; thus, sufficiently far from Xi, the truncation error in aId applied to
1(6 is small, and is well-approximated by zero.

2). Solve ~JduJd == R using a fast Poisson solver. The use of fast Poisson solvers
on rectangular grids is standard, and we won't discuss it here. The only subtlety
in the present case is that the boundary conditions required are "infinite domain"
boundary conditions, i.e., a set of discrete boundary conditions corresponding to the
infinite domain Green's function G * p == u, G{x) == - 2

1
7r 10g(lxl). However, tIns can

be done by performing two fast Poisson solves with Dirichlet boundary conditions.

9). Calculate the velocity field at the particle locations. For the collection of
particles contained in a given cell, this is done in two steps. First, the velocity induced
by particles in nearby cells is computed using the direct N -body formula (2). Then
the effect of all more distant particle is interpolated from the finite difference grid,
having first corrected the values from u ld to reflect the fact that the influence of the
nearby particles has already been accounted for in the local N-body calculation.

(3) U(x;) = E wjKs(x. - Xj)
j:IB(xd-B(xj)I$C

+I(xi; iill ... iiI")

18

It, ... ,I" - B(Xi), B(Xi) ± [0,1], B(x.) ± [1,0]

iiI. - U~d 2: wi K6(1 lt h - Xj)

j:\B(Xi)-B(xi)1

Here, I(x; ii,l ... UI.) IS calculated using complex polynomial interpolation in the
plane.

lex) - (Re(I(z», -Im(I(z»)
4

I(z) - 2:aqZq, z = (Xl + HX2)
q=0

with the coefficients chosen such that

I{z,) - UI. - HVIJI

Zit - (1; + Hl~)h
In figure 4 we give a FIDIL implementation of Anderson's algorithm for evaluating

the velocity field induced by a collection of vortices on themselves. The procedure
MLC takes as input the arguments psi, which contains the vortex data structure, and
h, the finite difference mesh spacing. Psi is a two-dimensional map whose values are
one dimensional maps of varying sizes. The values of the one-dimensional maps are
of type vortex_record. Thus psi represents the collection of vortices sorted into finite
difference cells: the domain of psi is the finite difference grid, and a vortex at position
Xi is represented by an entry in psi [k] only if Xi = k. ML C evaluates the velocity
fields induced by the vortices in psi on themselves and stores them in velocity field of
each vortex_record in psi.

The first step of MLC is performed in (A)-(B). For each cell, the velocity field
induced by the vortices in that cell is calculated for all the points in a domain large
enough so that the nine-point Laplacian applied to the resulting map is defined on
D_C. To define the finite difference Laplacian, we use the operator and shift calculus
defined in figure 2 which has been included in the header file operator_calculus.h. Then
A,fd is applied, and the result is used to increment RHS. The second step the call to
PoissonSolve (C), which we take to be an externally defined procedure, to obtain u /d

defined on the grid domainOf(psi). The third step is performed in (D)-(E). For each
cell k, all of the vortices which will contribute to the sums in (3) for the vortices in
psi [k] are gathered into a single map psi_corrections. Then the velocities of psi [k]
are initialized ",ith sum of the local N-body velocities. Finally, u_fd_local, the map
containing the values of ii are computed, and the interpolated velocities added to
velocity@(psi [k]).

4.2. Example 2: Finite Difference Methods. A large class of time-depen­
dent problems in mathematical physics can be described as solutions to equations of
the form

#include It operator _calculus.h n

let
Fd_ Values = [*2] two Vector;

let
toComplex= proc(real a,b) -> complex: a + b*li,
iota = proc(domain[?nl D) -> [D] valtype(D): [i from D: i];

let PoissonSolve = proc(Fd_Values u) -> Fd_Values:
external PoissonSolve;

let
C = 2,
D_C= [-C .. C, -C .. C],
rhs-stencil = accrete(D_C),
interpolation...8tencil = Image ([[0,0], [0,1], [1,0], [-1,0], [0,-1]]);

let MLC = proc(ref [*2] flex [] vortex_record psi):
begin

let
D = [i from domainOf(psi): length(psi (i]) /= 0];

[domainOf(psi)] two Vector RHS;

RHS := [domainOf(psi): [0.0, 0.0]];

let Laplacian = proc (Fd_Values u) -> Fd_Values:
(4.*(El(1) + E1(-I) + E2(1) + E2(-I» - 20.0*Id +

/* (A) */

E1(1)#E2(1) + E1(1)#E2(-1) + E1(-1)#E2(1) + E1(-1)#E2(-1»)(u)

for k from D do
let

u_rhs_local = vortex_blob(?, psi [k])@(iota(rhs_stencil « k)*h);

RHS := RHS + Laplacian(u_rhs_local)/(6.0*h**2)

od; /* (B) */

let u_fd = PoissonSolve(RHS,h); /* (C) */
FIG. 4. FIDIL program for the /&{ethod of Local Corrections (Part 1 of 2).

20

for k from D do
flex [*] vortex_record psi_correction3;
psi_corrections :== NullMap(l,vortex_record};

for j from D_C do
psLcorrections :== concat{psi_corrections, psi [k+j])

od;

velocity@(psi [k]) :==

/* (D) */

velocity@(psi [k]) + vortex_blob(?, p3i_corrections)@(x@(psi [k]» j

u_fd_local :=

od;

u_!d < < -k on interpolation..3tencil
- vortex_blob(?, p8i_corrections) @

(iota(interpolation_8tencil < < k)*h);
velocity@(psi [k]) :=

velocity@(psi [kJ)
+ interp(?, tt_fd_locaZ)@«p08ition@(psi[k]) - k*h)/h);

end /* of MLC */;

let interp == proc(two Vector x; Fd_ Values u_!d) - > two Vector:
begin

let
a = toComplex@(u_!d [] [1] ,-u_!d [] [2]),
z = to Complex (x (1) ,x [2]),

coe! = [
a [[0,0] J,

/* (E) */

-(a[[I,O]] - a[[-I,O]] - 1i*(a[[0,-1]] - a[[0,1]]»*.25,
(a[[-I,O]] + a[[l,O]] - a[[O,l]] - a[[0,-I]])*.25,
-(a[[-I,O]] - a[[I,O]] + li*(a[[O,-I]] - a[[0,1]]»*.25,
-(a[[O,O]] - a[[I,O]] - a([-I,O]] - a[[0,1]] - a[[0,-1]])*.25

],
pofz = coef[l] + z*(coe![2] + z*(coe![3] + z*(coe![4] + z*coef[5]»):

return([realPart(pofz), imagPart(pofz)]);
end /* of Interp * /;

FIG. 4. FIDIL progrom for the Method of Local Corrections (Part 2 of 2).

21

U == U(x,y, t) E RM,F, G == F(U), G(U)

Such systems are known as conservation laws, since the equations are in the
form of a divergence in space-time of (U, F, G). Hyperbolic refers to the fact that
the underlying dynamics is given locally by the propagation of signals with finite
propagation velocity; in particular, the initial value problem is well-posed. In general,
F and C are nonlinear functions of U; for example, in the case of Euler's equations
for the dynamics of an inviscid compressible fluid, if we denote the components of U
by U == (p, m, n, E), then the :fluxes are given by

m2 mn m
F(U) = (m, - + p, -, -(E + p)},

p p p

mn n 2 n
C(U) == (n, -, - + p, -(E + p)),

p p p

where the thermodynamic pressure p is given by

m 2 +n2

p = (E - 2p2)(y -1).

A widely used technique for discretizing conservation laws is to use finite difference
methods whose form mimics at a discrete level the conservation form of the differential
equations.

Here ~t is a temporal increment, ~x and ~y are spatial increments, and n , i , j,
are the corresponding discrete temporal and spatial indices. The discrete evolution (4)
has a geometric interpretation on the finite difference grid. We interpret Ui~j as the
average of U over the finite difference cell ~t..j,

~i.j == [(i - 1/2)~x, (i + 1/2)dx] x [(j -1/2)dy, (j + 1/2)~y]

Utj ~ 1 f U(x, y, n~t)dxdy,
, ~xLly JA .. ',J

and the evolution of U can be thought of as given by a flux. balance around the edges
of di,j .

The first algorithm we consider is a variation on one of the first algorithms for
conservation laws, the Lax-Wendroff algorithm. We use a two-step formulation of a
type first introduced by Richtmyer [6]. Here, and in what follows, we take the spatial

22

grid to be square, i.e. ~x = ~y = h. The algorithm we will consider is given as
follows.

(5) Ui+ 1/ 2,j+l/2 - ~(U;7i + U;7j+l + UtI-I,; + U,+l,j+I)

+ ~~ (F(U;7j) + F(U;7i+ 1) - F(Ui+1,j) - F(Ui+1,j+l»)

+ ~;(G(Ui:i) - G(Ui7i+l) + G(Ui+1,j) - G(U'+l,j+1»)

It is clear from the above description that, if we want to evolve the solution on
a finite rectangular grid for one time step, it suffices to provide additional solution
values on a border of cells one cell wide all around the grid. A fairly general way to
implement such boundary conditions is to provide a procedure 4>(U, h) which returns
U B, the values required on the border of cells surrounding the grid where U is defined.

In figure 5 we give a FIDIL implementation of the Lax-Wendroff algorithm (4))
(5). Again, we use the operator and shift calculus from figure 2 to implement the
algorithm. We have split the implementation into two pieces. LW -Flux takes as input
a map containing the values of U on the extended grid required to computed the
fluxes Fi,+1/2,j,G',j+l/2' It returns a map of type [1 .. 2] flex Values containing those
fluxes. This map--valued map is a natural type for describing fluxes for conservation
laws, since one needs a map of type Values with a different domain for the flux in each
coordinate direction. The procedure L W calls phi to calculate the boundary values
U JJ, calls L W -Flux with the first argument given by the direct sum of U and U JJ.
Finally, U is updated in place using (4).

In finite difference calculations of solutions to hyperbolic conservation laws, it is
often the case that the accuracy of the computed solution for a given rectangular
mesh spacing can vary substantially as a function of space and time. If one wants to
maintain a uniform level of accuracy in a calculation, it is necessary to to vary the
mesh spacing as a function of space and time, concentrating computational effort in
regions where the error is largest. One approach is Adaptive1vIesh Refinement (A1vIR)
[3,2], in which the finite difference mesh is locally refined in response to SODle locally
computed measure of the error. This leads to an algorithm in which the solution
is defined on a hierarchy of rectangular grids, with the time evolution computed
by multiple applications of a rectangular grid integration scheme such as the Lax­
\Vendroff algorithm described above. In addition, the error is periodically measured,
and the grid hierarchy modified as required. In the {ollo,ving, we describe in detail the
structure of the solution on the grid hierarchy, and give a FIDIL implementation of

23

#include II operator _calculus.h II
let

nvar = 4,
Vector = [1 .. nvar] real,
Values = [*2] Vector,
Fluxes = [1 .. 2] flex ValueJ,
gamma = 1.4;

let L W.-Flux = proc(Values U; real h, dt) - > Fluxes:
begin

let
U_corner = O.25*(E1(1) + Id + E2(1) + E1(1)#E2(1»(U),
F..:e = O.5*«E2(1) + Id)#(El(l) - Id»(F_fcn@(U»,
G_y = O.5*«E1(1) + Id)#(E2(1) - Id»(G_fcn@(U»,
U~alf= U_corner - dt*(F..:e + G_y)/(2.*h);

return [O.5*(Id + E2(1))(F_fcn@(U~alf»,
O.5*(Id + E1(1»(G_fcn@(U~alf»]);

end;
let LW = proc(ref Values U; real h,dt):

begin
let

D = boundary(domainOf(U»,
UJJ = phi(U, D, h),
Flux = LWYlux(U (+) UJJ, h, dt);

U:= U + dt*Div(Flux}/h;
end;

let F-fcn = proc(Vector U) -> Vector:
begin

let p = (U [4] - (U [2] **2 + U [3] **2)/(2.* U [1]))*(gamma - 1.);
return([U [2], U [2] **2/ U [1] + p, U [2] * U (3] / U [1], U [2] *(U [4] + p)/ U [1]]):

end;
let G_fcn = proc(Vector U) -> Vector:

begin
let p = (U [4] - (U [2] **2 + U [3] **2)/(2.* U [1]))*(gamma - 1.);
return([U[3],U(2]*U(3]/U[l],U[2]**2/U(l] + p,U[2J*(U[4] + p)/U[l]]):

end;

FIG. 5. FIDIL program for the Laz- WendroiJ algorithm.

24

DI •l

D2..1

r---

D3•1

i...---

D~.2

FIG. 6. Grid hierarchy for three levels.

the time evolution of that solution for the special case of the Lax-"'''endroff algorithm
as the underlying integration scheme.

AMR is based on using a sequence of nested, logically rectangular meshes on
which the PDE is discretized. For simplicity, we will also require that all the meshes
be physically rectangular, with equal mesh spacing in both coordinate directions. We
say a mesh at level 1 is a grid Di,le with mesh spacing h, and define

D, == UkDl,k.

The mesh spacings on the various grids are related by h,j h
'
+1 == r where the refinement

ratio r is restricted to be an even number. By identifying a grid with the domain it
covers, we have Dl == UkDl,k == D, the problem domain. If there are several grids at
levell, the grid lines must align with each other~ that is, each grid is a subset of a
rectangular discretization of the whole space. We may often have overlapping grids
at the same level, so that D1,i n Did' =I 0, but how the grids intersect should have no
effect on the solution. We require that the discrete solution be independent of how
D, is decomposed into rectangles. Grids at different levels in the grid hierarchy must
be "properly nested." This means

(i) a fine grid is anchored at the corner of a cell in the next coarser grid.
(ii) There must be at least one level 1-1 cell in some level 1- 1 grid separating a

grid cell at level 1 from a cell at level 1 - 2, unless the cell abuts the physical
boundary of the domain.

Note that this is not as strong a requirement as having a fine grid contained in only
one coarser level grid.

Grids will be refined in time as well as space, by the same mesh refinement ratio.
Thus,

t:..tl ~tl-l ~tl
h; = h,- 1

== ... == -,;;

and so the same difference scheme is stable on all grids. This means more time steps
are taken on the finer grids than on the coarser grids. This is needed for increased

25

accuracy in time .. In addition, the smaller time step of the fine grid is not imposed
globally. Finally, UI,1e denotes the solution on D"k ; in addition, we can define U' to
be the solution on D1, since the solution on overlapping grids at the same level are
identical.

The AMR algorithm for advancing the solution on the composite grid hierarchy
described above can be formulated as being recursive in the level of refinement. On a
given level of refinement 1, the algorithm can be broken up into three steps.

Step 1.. Advance the solution on all the level I grids by one time step, using a
conservative algorithm for doing so on a single rectangular grid. The only difficulty
is in specifying the values along the outer border of Dl,l. For cells in that border con­
tained in other grids at the same level, we copy the values from those other grids. For
cells exterior to the physical domain, we use an appropriate variation of the physical
boundary condition operator 4>. For any remaining cells, we use values interpolated
from the coarser levels. For the Lax-'Vendroff algorithm described above, we can use
a particularly simple interpolation scheme consisting of piecewise constant interpola­
tion in space and linear interpolation in time using only the level 1 - 1 grids. This
is possible due to the fact that Lax-Wendroff requires a border of boundary values
that is only one cell thick, and because of the proper nesting requirement of the AMR
grid hierarchy. After the solution is advanced, we use the numerical fluxes to initial­
ize or update certain auxiliary variables used to maintain conservation form at the
boundaries between coarse and fine grids; these quantities will be described in detail
in step 3.

Step 2.. Advance the solution on all the level I + 1 grids by r time steps, so that
the latest values of the 1 + 1 are known at the same time as the level I solutions
obtained in step l.

Step 3 .. Modify the solution values obtained in step 1 to be consistent with the
level I + 1 fine grid solutions. This will be the case if

(i) the grid point is underneath a finer level grid;
(ii) the grid point abuts a fine grid boundary but is not itself covered by any fine

grid.
In case (i), the coarse grid value at level 1-1 is defined to be the conservative average
of the fine grid values at level 1 that make up the coarse cell. After every coarse
integration step, the coarse grid value is simply replaced by tins conservative average,
and the value originally calculated using (4) is thrown out. For a refinement ratio of
r, we define

(6)

where the indices refer to the example in Figure 7.

In case (ii), the difference scheme (4) applied to the coarse cell must be modified.
According to (4), the fine grid abutting the coarse cell has no effect. However, for

26

"'+1'·1
j

m

" kT
i

FIG. 7. The coarse cell value is replaced by the average of all the fine grid points in that cell.

the difference scheme to be conservative on this grid hierarchy, the fluxes into the fine
grid across a coarse cell boundary must equal the flux out of the coarse cell. We use
this to redefine the coarse grid flux in case (ii). For example, in the figure below, the
difference scheme at cell (i, j) should be

U/,j(t + at,) -

(7)

The double sum is due to the refinement in time: for a refinement ratio of T, there
are r times as many steps taken on the fine grid as the coarse grid. If the cell to the
north of (i, j) \vere also refined, the flux Gti+l/2 would be replaced by the sum of fine
fluxes as well.

This modification is implenlented as a correction pass applied after a grid has been
integrated using scheme (4), and after the finer level grids have also been integrated~
so that the fine fluxes in (7) are known. The modification consists of subtracting the
provisional coarse flux used in (4) froln the solution U f.j(t + atl), and adding in the
fine fluxes to according to (7). To implement this modification, we save a variable bF
of fluxes at coarse grid edges corresponding to the outer boundary of each fine grid.
After each set of coarse grid fluxes has been calculated in step 1, we initialize any
appropriate entries of 8F with

(8)

Since several coarse grids may overlap, it is possible that 8F may be initialized more
than once. However, since the coarse fluxes on overlapping cell edges for the same
level are identical, the initial value so obtained is independent of which particular
coarse grid flux is assigned last. At the end of each fine grid time step, we add to

27

m+1'-1
j

m

k

FIG. 8. The difference scheme is modified at a coarse cell abutting a fine grid.

6Fi+1/2,j the sum of the fine grid fluxes along the (i + 1/2, j)th edge,

(9)

Finally, after r fine grid time steps have heen completed, we use 6Fi+1/2,j to correct
the coarse grid solution so that the effective flux is that of (7). For example, for cell
(i + 1, j), we make the correction

(10)
;ltt

V, .- U
'

+ cF. i+l,i'- *+1,i -;;;0 i+l/2,j'

If the cell i + 2, j were refined, \ve would also make the correction

and similarly for the vel,tical fluxes. At the end of a time step, we may have several
fine grids available to update a given coarse cell edge, since overlapping grids are
permitted, For this reason, one must keep track of the edges of a coarse cell that have
already been updated, and only perform the update once for each edge. As before,
it doesn't matter which fine grid actually performs the update for any given edge, so
the result is independent of the order in which the fine grids are traversed.

In figure 9, we give a FIDIL implementation of the integration step outlined
above for AMR. The main procedure Step takes a single integer argument 1, the
grid level being integrated. The principal variables are two copies U, U_new, of the
composite map structure containing the entire set of solution values, with V I,k stored
in U [l] [k]. The two sets of values U, U_new correspond to two different time levels,
with times time [1], time [1] + delta_t [1] depending on the grid level I. 'Ve also define

28

BoundaryYlux, in which the correction fluxes SF, SG, are stored for the outer edges
of all the grids. The refinement ratio s denoted by nre/ine.

The first step of the A?v!R integration procedure is performed in (A)-(B). For each
level 1 grid solution Ul,k, appropriate boundary conditions are calculated and stored
in U_B, a map whose domain is Boundary(domainOf(U [l] [k]). In the first loop
of this section, boundary values are interpolated from all possible 1 - 1 grids, using
piecewise constant interpolation in space, and linear interpolation in time. Since the
domain of U JJ is only one cell wide, proper nesting guarantees that all the values of
U-B corresponding to points in the problem domain D will be set by this procedure.
In the second loop, all of the values of U -B for which level 1 values are available are
overwritten with them. Then the physical boundary condition procedure 4> is called
to fill in any remaining cells which extend outside D. Having obtained appropriate
boundary values for U l,k, we compute fluxes using L W Ylux and compute U _new using
(4). Finally, we set Boundary-.Flux [1] and Boundary_Flux [1+1] using (8) and (9)
along the outer edges of D"k' The procedure Project-.Flux, defined at the end of the
figure, calculates the average of the fluxes in the right hand side of (9).

The second step is performed at (C), with Step called recursively nrefine times
with argument 1 + 1.

The third step is in (D)-(E). In the first part of the loop over Grids, levell cells
are incremented using the refluxing algorithm (10). The domains D-fix are used to
keep track of which edges are being updated, so that no edge gets updated more than
once. The final loop over Gridsp overwrites the levell values with the averages of the
level 1 + 1 values using (6).

29

export Step;

let

let

maxlev = 3,
nrefine = 4,
refine - [nrefine, nrefine] ,
Box == [0 .. nrefine - 1, 0 .. nrefine - 1];

Level.s == [1 .. maxlev];

let e_vector ==
proc (integer i, ndim) - > [1 .. ndim] integer:

[j from [1 .. ndim] : if i = j then 1 else 0 fi];

postfix operator "*;
let

"'. ==
proc(domain[?ndim] D) -> [1 .. ?ndiml domain[?ndim]:

[i from [1 .. ndim] : D + D < < e_vector(i, ndim)],
del =

proc(domain [?ndiml D) -> [1 .. ndiml domain [ndim] :
[i from [1 .. ndim] :

(D + D« e_vector(i,ndim) - (D - D« e_vector(i,ndim»];

external [Levels] flex [] flex Values U, U_new;
external [Levels] flex [] Fluxes Boundary_Flux;
external [Levels] real delta_t, h, time;

FIG. 9. FIDIL program for Adaptive J.,fesh Refinement (Part 1 of 4).

30

let Step == proc (integer 1) :
begin

U [l] :== U_new [1] ;
alpha == (time [l-l] - time [1])/ delta_t [1-1]

let
Grids == domainOf (U [1]),

/* (A) */

Gridsp == if 1 < maxlev then domainOf(U [1+1]) else NoGrids fi,
Gridsm == if 1 > 1 then domainOf(U [1-1]) else NoGrids fi;

for k from Grids do
[Boundary(domainOf (U [1] [k]»)] Vector U JJ;

for km from Gridsm do
for i from Box do

contract(UJJ « i, refine) *:==
alpha. U [1-1] [km] + (1. - alpha)* U_new [1-1] [km]

od;
od;

for kb from Grids do U JJ *:== U [1] [kb] od;

UJJ *:== phi(U,domainOf(U-..8),h [l]);

let
Flux == LW Jlux(U [1] [k] (+) U -..8, delta_i [1], h [1]);

U_new [1] [k] :== U [1] [k] + delta_t [1] *Div(Flux)/ h [1];
if I > 1 then

Boundary1lux [1] [k] *:== Boundary_Flux [1] [k] + ProjectYlux (Flux):
fi;
for kp from Gridsp do

od;
od;

BoundaryYlux (l+l] [kp] *:== Flux*nrefine**2
on dele contract(U [l+l] [kp] J refine))

FIG. 9. FIDIL program for Adaptive Afesh Refinement (Part 2 of 4).

31

time [1] := time [1] + delta_t [1]; /* (B) */

if I < maxlev then

for n from [1 " nrejine] do Step(l+ 1) od; / * (C) * /

for kp from Gridsp do /* (D) */
Boundary..Flux [1+1J [kp] .-

delta_t [I] *Boundary-Flux [1+1] [kp] !(h*nrejine.*2)
od;

for k from Grids do

[1 .. 2] domain[2] D-fix;

D-fix := domainOf(U [1] [k]) "'*;

for dir from [1 .. 2] do

od;

let E = e_vector(dir, 2);

for kp from Gridsp do
U_new [lJ [k] *:=

U_new [1] [k]

od;

+ (Boundary_Flux [1+ 1] [kp] [dir] on D-fix [diT]);
U_new [1] [k] « -E *:=

U_new [1] [k] « -E
- (Boundary-Flux [l+1] [kp] [dir] on D-fix [dir]);

D-fix [dir] :=
D-fix [dir] -domainOf(Boundary_Flux [l+l] [kp] [dir])

FIG. 9. FIDIL program for Adaptive AJesh Refinement (Part 9 of 4).

32

for kp from Gridsp do

U _new [1] [k] *:= [contract(U J'l,ew [1+ 1] [kp], refine}: 0.0];

fii

od;
od;

for i from Box do
U_new [1] [k] *:=

U_new [1] [k]

contract(U ..new [1+ 1] [kp] < < i, refine)
od;

end /* of Step */;

let ProjectJi'lux = proc(Fluxes Flux) - > Fluxes:
begin

Fluxes OutFlux;

domainOf@(OutFlux) := contract@(Flux, refine);

for dir from [1 ., 2] do

/* (E) */

OutFlux[dir] := [domainOf(OutFlux[dir]): [[1 .. nvar]: 0.0] J;
let E = e_vector(if dir = 1 then 2 else 1 ii, 2);
for i from (0 .. nrefine - 1] do

OutFlux [dir] .- OutFlux [dir] + contract(Flux [dir] < < (i*E), refine) ;
od;

od;
return(OutFlux);

end /* of ProjectJi'lux */;

FIG. 9. FIDIL program for Adaptive Mesh Refinement (Part 4 of 4).

33

Acknowledgement. We would like to thank Luigi Semenzato for his comments
on various versions of this document.

REFERENCES

[1] C. R. ANDERSON, A method oj local corrections Jor computing the velocity field due to a distribu­
tion oj vorie:c blobs, J. Comput. Phys., 62 (1986), pp. 111-123.

[2J M. J. BERGER AND P. COLELLA, Local adaptive mesh refinement Jor shock hydrodynamics, Tech.
Rep. VeRL-97196, Lawrence Livermore Na.tional Laboratory, 1987. To appear in J. Com­
put. Phys.

(3) M. J. BERGER AND J. OLIGER, Adaptive mesh refinement Jor hyperbolic partial differential equa-
tions, J. Comput. Phys., 53 (1984), pp. 484-512. .

[4] A. J. CHORIN, Numerical study oj slightly viscous flow, J. Fluid Mech., 57 (1973), pp. 785-796.
[5] O. HALO, Convfrgenee oj vortex methods, 1I, SIAM J. Numer. Anal., 16 (1979), pp. 726-755.
[6] R. D. RICHTMYER AND K. W. !\10RTON, Difference Methods Jor Initial Value Problems, Inter­

science, New York, 1967.

34

