
A

(QUICK STARTER)

GUIDE TO

HipGISAXS

version 0.01-alpha

Lawrence Berkeley National Laboratory October 2012

Intentional blank page.

Contents

Contents 1

1 Introduction 3
1.1 What is HipGISAXS? . 3
1.2 Where’s What? . 4
1.3 Developers of HipGISAXS . 4
1.4 Licensing Information . 5

2 Supported Platforms 7
2.1 Operating System Platforms . 7
2.2 System Hardware (Compute Environment) 7
2.3 System Hardware (GPU/CPU) . 8

3 Software Pre-requisites 9
3.1 Required Software List . 9

4 Directory Layout 13

5 Building and Installing 15
5.1 On Carver/Dirac at NERSC, LBNL . 15
5.2 On Titan at OLCF, ORNL . 16
5.3 On a generic Linux system . 16
5.4 On a generic Mac OS X system (single or multiple-node) 17
5.5 On saxs-waxs-gpu (for certain local users only) 17

1

2 CONTENTS

5.6 On saxs-waxs-gpu2 (for certain local users only) 18

6 Running on a System 19
6.1 Interactively on Dirac . 19
6.2 Batch script on Dirac to use multiple GPU nodes 20
6.3 Interactively on Titan . 21
6.4 Batch script on Titan to use multiple GPU nodes 22
6.5 Interactively on a generic single-node Linux system equipped with

a GPU
(including saxs-waxs-gpu and saxs-waxs-gpu2) 22

6.6 Interactively on a genericmultiple-nodeLinux cluster equippedwith
a GPU on each node . 22

6.7 Interactively on a generic single-node Mac OS X system equipped
with a GPU . 22

6.8 Interactively on a generic multiple-node Mac OS X cluster equipped
with a GPU on each node . 22

7 Inputs 23

8 Tutorial and Examples 25

Chapter

1 Introduction

1.1 What is HipGISAXS?

HipGISAXS,which stands forHigh-PerformanceGISAXS (Grazing Incidence Small-
Angle X-ray Scattering), is a GISAXS pattern simulation software, based on the Dis-
torted Wave Born Approximation (DWBA) theory. HipGISAXS is a massively par-
allel code and delivers high-performance by utilizing parallel processing on clus-
ters of graphics processors (GPUs) and multi-core CPUs. It can be used on any
system ranging from a standalone desktop computer to large state-of-the-art clus-
ters and supercomputers.

HipGISAXS is a handy tool for synchrotron light-source beamline experimen-
talists facing amassive flux of data, allowing them to accurately simulate theGISAXS
processes and analyze the generated data. It computes scattering intensity patterns
for any given sample comprising of a superposition of custom shapes ormorpholo-
gies, which may be obtained graphically via a discretization scheme, in a user-
defined region of the k-space, for all possible grazing incidence angles and in-plane
sample rotations. This flexibility allows an easy tackling of a wide range of sample
geometries, such as macromolecules and nanostructures on top of or embedded in
a substrate, or in a multilayered media.

3

4 CHAPTER 1. INTRODUCTION

1.2 Where’s What?

This document is a starting point in the HipGISAXS documentation. It covers in-
formation on the usage of the software, and gives pointers to other documents for
further details. Specifically, this document describes the supported systems and
platforms, pre-requisites, installation and execution of HipGISAXS. It can also be
treated as a quick start guide for those who want to right-away dig into using the
software.

Documentation included with the HipGISAXS software package comprises of
the following parts.

• This document, which serves as a starting point to HipGISAXS.

• Details on the theory behind HipGISAXS and its working can be found in the
"The theory behind HipGISAXS" document.

• Implementation details of the software can be found in the "Implementation
details of HipGISAXS" document.

• Description of all the inputs to this software are given the "A guide to the inputs
of HipGISAXS" document.

• Frequently asked questions and troubleshooting on the usage of the software
are detailed in the "FAQ’s and troubleshooting HipGISAXS" document.

• A man page giving an overview of the usage of HipGISAXS is also included
in the package.

1.3 Developers of HipGISAXS

HipGISAXShas been realized through the combined efforts of a teamof researchers.
The HipGISAXS development team comprises of the following members:

• Slim T. Chourou (developer and author of initial Matlab implementation,)

• Abhinav Sarje (author of high-performance GPU/multi-core C++ implementation,)

• Elaine R. Chan,

• Alexander Hexemer, and

• Xiaoye S. Li.

1.4. LICENSING INFORMATION 5

1.4 Licensing Information

HipGISAXS is available freely for non-commercial use under the ABCXYZ license.
<put licensing information for HipGISAXS here.>

Intentional blank page.

Chapter

2 Supported Platforms

HipGISAXS has been tested on, and technically supports, the following major plat-
forms.

2.1 Operating System Platforms

1. GNU/Linux x86_64: Ubuntu, Red Hat Linux, SUSE Linux, Cray Linux Envi-
ronment (CLE) (tested on Cray XT5, XE5 and XK6 systems).

2. Darwin x86_64: Mac OS X (Lion, Mountain Lion).

3. You could try building and running HipGISAXS on any 64-bit system with a
UNIX based operating system, and if you are lucky, it may support it.

Please let us know about your platform so that we can include it in our list of plat-
forms to support.

2.2 System Hardware (Compute Environment)

1. HPC Clusters/Supercomputers equipped with at least one Nvidia graphics
processor (GPU) as accelerator on each node.

2. Generic desktop equipped with a compute GPU (see system hardware sup-
port below).

7

8 CHAPTER 2. SUPPORTED PLATFORMS

3. Coming soon: A cluster/supercomputer or desktop equipped with generic
Intel/AMD 64-bit CPU (single or multi-core) without any GPU accelerator
available.

2.3 System Hardware (GPU/CPU)

1. GPU accelerators: Fermi or Kepler architecture based Nvidia GPUs. Com-
pute capability of the GPUs should be 2.0 or higher. Current HipGISAXS
version mandates availability of a GPU accelerator to run.

2. CPU host nodes: HipGISAXS should run on any 64-bit Intel/AMD CPU, in-
cluding multi-cores. Note that we have not extensively tested on the various
types of processors yet. If HipGISAXS does not successfully on your system,
let us know about its configuration/processor so that we can support it.

Chapter

3 Software Pre-requisites

The current version of HipGISAXS supports only systems equipped with compute
GPUs as accelerators (see Chapter 2). This software uses third-party libraries, and
these need to be installed and available on your system in order to compile and run
HipGISAXS.

You may have some of these software/libraries already available on your sys-
tem, and you may use them. Alternatively, you may download and install it your-
self.

NOTE: The supplied compiled binary with the HipGISAXS tarball is dynami-
cally linkedwith these libraries onCarver/Dirac, someof them installed at /global/
homes/a/asarje/local/. It is recommended to use either the installations already
available on the system, or you own local installations, and not rely on this local
user installation.

3.1 Required Software List

The following are the dependencies of HipGISAXS:

1. GNU C/C++ compilers, version 4.3 or greater, but no greater than 4.5.x.

If these are not available on the system, they will need to be installed.

9

10 CHAPTER 3. SOFTWARE PRE-REQUISITES

There are different ways to do this on various Linux flavors, for example on
a Ubuntu system, you can use the apt-get tool:

$ sudo apt-get install gcc

OnMac OS X, these compilers can be installed either by installing Xcode, or
independently without Xcode using sources or through package man-
agers like Homebrew.

2. Nvidia CUDA version 4.x.

CUDAmaybe obtained from: http://developer.nvidia.com/cuda/cuda-downloads.

NOTE: CUDA version 5.0rc is also supported.

3. GNU compiled OpenMPI, version 1.4.4 or higher.

OpenMPI can be obtained from: http://www.open-mpi.org/software.

4. Boost, and the ‘numeric’ extension to BoostGIL (Generic Image Library). This
extension is NOT distributed with Boost, so you need to install it explicitly.

Boost can be obtained from: http://www.boost.org.

The ’numeric’ extension to Boost GIL can be obtained from one of the fol-
lowing locations:

http://sourceforge.net/adobe/genimglib/wiki/Downloads, or

http://gil-contributions.googlecode.com/svn/trunk.

NOTE:Boost and the ’numeric’ extension toGIL are also installed at /global/homes/a/asarje/local/boost_1_49_0
on Carver/Dirac.

5. Parallel HDF5 library.

HDF5 can be obtained from: http://www.hdfgroup.org/downloads.

NOTE 1: OnCarver/Dirac, parallelHDF5 is also installed at /global/homes/
a/asarje/local/hdf5-1.8.8-gnu/parallel.

NOTE 2: An hdf5-parallelmodule is also available on Carver/Dirac.

NOTE 3: HDF5 depends on zlib and szip.

Zlib (libz) can be obtained from: http://www.zlib.net.

Szip (libsz) can be obtained from: http://www.hdfgroup.org/doc_resource/
SZIP.

3.1. REQUIRED SOFTWARE LIST 11

6. Tiff image library (libtiff).

Tiff library can be obtained from: http://www.libtiff.org.

NOTE: It is also installed at /global/homes/a/asarje/local/tiff-4.0.2
on Carver/Dirac.

Download and install the above softwares/libraries, if needed, before going on
to building or using HipGISAXS.

Intentional blank page.

Chapter

4 Directory Layout

The HipGISAXS software package is organized into various directories as shown
in the diagram below.

hipgisaxs/ : The root of the HipGISAXS package.

Makefile : The main makefile to build HipGISAXS.

README : A quick start information (read first).

bin/ : Contains HipGISAXS binaries generated by compilation.

build/ : Contains a few makefiles for various predefined systems.

data/ : Provides some sample input custom shape definition files in
HDF5 format.

doc/ : Contains detailed documentations of HipGISAXS.

inputs/ : Provides some sample input files to the HipGISAXS program
in HiG format.

man/ : Contains the man pages about HipGISAXS usage.

13

14 CHAPTER 4. DIRECTORY LAYOUT

obj/ : All object files generated during build are stored here.

src/ : The main source directory containing all source files.

Chapter

5 Building and Installing

If you want to re-build the HipGISAXS binary, use the make utility as in the follow-
ing cases:

5.1 On Carver/Dirac at NERSC, LBNL

1. Somemakefiles for different systems are included in the directory build. Re-
place the current Makefile with the one provided for Dirac (renaming it as
Makefile):

$ cp build/Makefile.dirac Makefile

2. Unload the default PGI modules:

$ module unload pgi openmpi

3. Load the required modules:

$ module load openmpi-gnu gcc/4.5.2 cuda/4.2

$ module load szip zlib

$ module load hdf5-parallel/1.8.3-gnu

15

16 CHAPTER 5. BUILDING AND INSTALLING

4. The Boostmodule available on Carver doesNOT include the ’numeric’ exten-
sion to GIL (Generic Image Library). Please download, install and use your
own copy of Boost and this extension, or use the one installed at /global/homes/a/asarje/local/boost_1_49_0.

5. Edit Makefile to specify the correct paths in the "base directories" section,
present towards the beginning of the file, to the actual locations of the various
libraries.

An example of the base directories section in the Makefile:

$ cat Makefile

...

base directories

BOOST_DIR = /global/homes/a/asarje/local/boost_1_49_0

MPI_DIR =

CUDA_DIR = /usr/common/usg/cuda/4.2

HDF5_DIR = /global/homes/a/asarje/local/hdf5-1.8.8-gnu/parallel

TIFF_DIR = /global/homes/a/asarje/local/tiff-4.0.2

Z_DIR = $(ZLIB_DIR) # an environment variable set by

loading zlib module

SZ_DIR = $(SZIP_DIR) # an environment variable set by

loading szip module

...

6. Build the code from within the main directory:

$ make clean

$ make

This will generate the binary hipgisaxs in the directory bin. All the gener-
ated object files of the source code are stored in the directory obj.

5.2 On Titan at OLCF, ORNL

Currently Titan is being built and upgraded, so this section can wait :-).

5.3 On a generic Linux system

1. The Linux system can be a single-node or multiple-node system.

5.4. ON A GENERIC MAC OS X SYSTEM (SINGLE OR MULTIPLE-NODE) 17

2. Make sure all the software prerequisites are available.

3. Make sure all system environment variables are set accordingly to include
the prerequisites. Generally, you may want to check the variables PATH and
LD_LIBRARY_PATH to include the required software paths.

4. Either Makefile.saxs1 or Makefile.saxs2 can be used as a template. Edit
the sample Makefile and set all the paths correctly (see the example in Sec-
tion 5.1 above).

5. Build the code from within the main directory:

$ make clean

$ make

5.4 On a generic Mac OS X system (single or multiple-node)

1. The Mac OS X system can be either a single-node or multiple-node system.

2. Make sure all the software prerequisites are available.

3. Make sure all system environment variables are set accordingly to include
the prerequisites. Generally, you may want to check the variables PATH and
DYLD_LIBRARY_PATH.

4. Edit the sample Makefile and set all the paths correctly (see example in Sec-
tion 5.1 above).

5. Build the code from within the main directory:

$ make clean

$ make

5.5 On saxs-waxs-gpu (for certain local users only)

1. Replace the current Makefile with the one provided for saxs-waxs-gpu (re-
naming it as Makefile):

$ cp build/Makefile.saxs1 Makefile

18 CHAPTER 5. BUILDING AND INSTALLING

2. All the "base directories" in the specified in this Makefile are set to the
correct locations of the respective software installations on this system. If you
want to use your own installation of any of these, please edit its corresponding
entry in the Makefile. An example:

$ cat Makefile

...

base directories

BOOST_DIR = /usr/local/boost_1_45_0

MPI_DIR = /usr/local

CUDA_DIR = /usr/local/cuda

HDF5_DIR = /home/asarje/local/hdf5-1.8.8-gnu/parallel

Z_DIR = /root/zlib-1.2.7

SZ_DIR = /root/szip-2.1

TIFF_LIB_DIR = /usr/local

...

3. Build the code from within the main HipGISAXS directory:

$ make clean

$ make

This will generate the binary hipgisaxs in the directory bin. All the gener-
ated object files are stored in the directory obj.

5.6 On saxs-waxs-gpu2 (for certain local users only)

Follow the same steps as above in Section 5.5, replacing the provided Makefile for
this system with build/Makefile.saxs2.

Chapter

6 Running on a System

Once the HipGISAXS binary is available for the system being used, follow the fol-
lowing steps to run GISAXS simulations depending on your particular system.

6.1 Interactively on Dirac

1. Unload the default loaded PGI modules:

$ module unload pgi openmpi

2. Load the required modules:

$ module load openmpi-gnu gcc/4.5.2 cuda/4.2

$ module load szip zlib

$ module load hdf5-parallel/1.8.3-gnu

3. Change to the main HipGISAXS directory. For example:

$ cd hipgisaxs

4. Request an interactive GPU node:

$ qsub -I -V -q dirac_int -l nodes=1:ppn=8:fermi

19

20 CHAPTER 6. RUNNING ON A SYSTEM

5. Wait until you are provided with a command prompt on a GPU node.

6. Make sure the loaded modules are correct as above.

NOTE: By default, PGI version of openMPI might be loaded. So you may
need to unloaded it again:

$ module unload openmpi

7. Move to the main HipGISAXS directory:

$ cd $PBS_O_WORKDIR

8. Execute the binary on the assigned node with an input file as the argument.

Usage: ./bin/hipgisaxs <input-file-in-HiG>.

For example:

$./bin/hipgisaxs inputs/test.27.hig

9. Formore details on running interactive jobs onDirac, please refer to the docu-
mentation available at: http://www.nersc.gov/users/computational-systems/
dirac/running-jobs/interactive

6.2 Batch script on Dirac to use multiple GPU nodes

In order to use multiple GPU nodes on Dirac, you need to submit a PBS script for
your job. Follow the following steps.

1. Note that HipGISAXS uses MPI for inter-node communication. Hence, you
need to use mpirun or mpiexec commands.

2. Create a PBS job script, or modify the provided samples as per your needs.
For example:

$ cat myscript.pbs

#PBS -q dirac_reg ## name of the queue

#PBS -l nodes=4:ppn=1:fermi ## number, type of nodes

#PBS -l walltime=03:00:00 ## wall time limit

#PBS -A gpgpu ## project identifier

#PBS -N jobname.4 ## job name

#PBS -e jobname.4.$PBS_JOBID.err ## error file name

6.3. INTERACTIVELY ON TITAN 21

#PBS -o jobname.4.$PBS_JOBID.out ## output file name

#PBS -V ## inherit env variables

cd $PBS_O_WORKDIR

module unload pgi openmpi

module load openmpi-gnu/1.4.5 gcc/4.5.4 cuda/4.2

module load szip zlib

module load hdf5-parallel/1.8.3-gnu

mpirun -np 4 ./bin/hipgisaxs inputs/test.27.hig

3. In the submission script, make sure that the modules are loaded correctly
before specifying the HipGISAXS execution command. The run command
for HipGISAXS in the script may be as follows:

mpirun -np <nodes> ./bin/hipgisaxs <input-file-in-HiG>

where, nodes is the number of GPU nodes required (see the example script
in previous step), and input-file-in-HiG is an input file in HiG format.

4. Submit the script:

$ qsub myscript.pbs

5. Now the job is in the queue, and once it is finished, the standard error and
output are saved into the corresponding filenames specified in the job script.

6. The output generated by HipGISAXS are all stored in a directory at the loca-
tion and name specified in the input file (see inputs in Section 7).

7. For a detailed information on writing and submitting job scripts on Dirac,
please refer to the documentation available at http://www.nersc.gov/users/
computational-systems/dirac/running-jobs/batch.

6.3 Interactively on Titan

Again, this can wait.

22 CHAPTER 6. RUNNING ON A SYSTEM

6.4 Batch script on Titan to use multiple GPU nodes

This can also wait.

6.5 Interactively on a generic single-node Linux system
equipped with a GPU

(including saxs-waxs-gpu and saxs-waxs-gpu2)

1. Make sure all the pre-requisites are available on the system.

2. Execute the HipGISAXS binary as follows.

Usage: ./bin/hipgisaxs <input-file-in-HiG>

For example,

$./bin/hipgisaxs inputs/test.27.hig

6.6 Interactively on a generic multiple-node Linux cluster
equipped with a GPU on each node

1. Make sure all the pre-requisites are available on all the nodes of the cluster.

2. Execute the binary as follows.

Usage: mpirun -np <nodes> ./bin/hipgisaxs <input-file-in-HiG>

For example,

$ mpirun -np 4 ./bin/hipgisaxs inputs/test.27.hig

6.7 Interactively on a generic single-node Mac OS X system
equipped with a GPU

On a Mac OS X system, follow the exact same steps as on a Linux system given in
Section 6.5.

6.8 Interactively on a generic multiple-node Mac OS X cluster
equipped with a GPU on each node

On a Mac OS X cluster, follow the exact same steps as on a Linux cluster given in
Section 6.6.

Chapter

7 Inputs

The HipGISAXS binary takes as input a file in HiG format. Please refer to the de-
tailed HipGISAXS documentation for details on the HiG format and how to write
an input file. A few sample input files are located in the directory inputs, with
extensions .hig. You may edit a sample input file as per your needs.

Some of the major components of the input file to update are the following.

1. The name attribute of shape object defines the input filename, as a string, con-
taining triangulated shape surface data. It should point to the correct location
of the shape file. This is a relative path. For example,

...

shape = {

...

name = "data/Shape_27.hd5", ...

} ...

This file should be in HDF5 format. Some sample shape definition files are
provided in the directory data, with extensions .hd5.

2. The location of output to be generated needs to be defined though the pathprefix
and runname attributes in the computation object. For example,

23

24 CHAPTER 7. INPUTS

...

computation = {

...

pathprefix = "myoutputs",

runname = "shape27", ...

} ...

The pathprefix is a relative path to an existing directory.

The value of runname is appendedwith a timestamp, and a directory by this
resulting name is created within the directory specified by pathprefix.
All the generated output files by HipGISAXS simulation are stored in
this directory.

In the above example, the location of generated output will be something
like myoutputs/shape27_20120927_142400/.

3. The resolution attribute of computation object alters the resolution of the
generated GISAXS simulation images in two-dimensions. This also affects
the run time of HipGISAXS. Lower resolutions take lesser time, and higher
resolutions take more time. It may be modified it as needed. For example,

...

computation = {

...

resolution = [0.5 0.5], ...

} ...

4. You may further edit rest of the entries in the input file according to your
desired experimental settings. For further details, refer to the Input Guide
for HipGISAXS.

Chapter

8 Tutorial and Examples

25

